Root/kernel/kgdb.c

1/*
2 * KGDB stub.
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30#include <linux/pid_namespace.h>
31#include <linux/clocksource.h>
32#include <linux/interrupt.h>
33#include <linux/spinlock.h>
34#include <linux/console.h>
35#include <linux/threads.h>
36#include <linux/uaccess.h>
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/ptrace.h>
40#include <linux/reboot.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/sched.h>
44#include <linux/sysrq.h>
45#include <linux/init.h>
46#include <linux/kgdb.h>
47#include <linux/pid.h>
48#include <linux/smp.h>
49#include <linux/mm.h>
50
51#include <asm/cacheflush.h>
52#include <asm/byteorder.h>
53#include <asm/atomic.h>
54#include <asm/system.h>
55#include <asm/unaligned.h>
56
57static int kgdb_break_asap;
58
59#define KGDB_MAX_THREAD_QUERY 17
60struct kgdb_state {
61    int ex_vector;
62    int signo;
63    int err_code;
64    int cpu;
65    int pass_exception;
66    unsigned long thr_query;
67    unsigned long threadid;
68    long kgdb_usethreadid;
69    struct pt_regs *linux_regs;
70};
71
72static struct debuggerinfo_struct {
73    void *debuggerinfo;
74    struct task_struct *task;
75} kgdb_info[NR_CPUS];
76
77/**
78 * kgdb_connected - Is a host GDB connected to us?
79 */
80int kgdb_connected;
81EXPORT_SYMBOL_GPL(kgdb_connected);
82
83/* All the KGDB handlers are installed */
84static int kgdb_io_module_registered;
85
86/* Guard for recursive entry */
87static int exception_level;
88
89static struct kgdb_io *kgdb_io_ops;
90static DEFINE_SPINLOCK(kgdb_registration_lock);
91
92/* kgdb console driver is loaded */
93static int kgdb_con_registered;
94/* determine if kgdb console output should be used */
95static int kgdb_use_con;
96
97static int __init opt_kgdb_con(char *str)
98{
99    kgdb_use_con = 1;
100    return 0;
101}
102
103early_param("kgdbcon", opt_kgdb_con);
104
105module_param(kgdb_use_con, int, 0644);
106
107/*
108 * Holds information about breakpoints in a kernel. These breakpoints are
109 * added and removed by gdb.
110 */
111static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
112    [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
113};
114
115/*
116 * The CPU# of the active CPU, or -1 if none:
117 */
118atomic_t kgdb_active = ATOMIC_INIT(-1);
119
120/*
121 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
122 * bootup code (which might not have percpu set up yet):
123 */
124static atomic_t passive_cpu_wait[NR_CPUS];
125static atomic_t cpu_in_kgdb[NR_CPUS];
126atomic_t kgdb_setting_breakpoint;
127
128struct task_struct *kgdb_usethread;
129struct task_struct *kgdb_contthread;
130
131int kgdb_single_step;
132
133/* Our I/O buffers. */
134static char remcom_in_buffer[BUFMAX];
135static char remcom_out_buffer[BUFMAX];
136
137/* Storage for the registers, in GDB format. */
138static unsigned long gdb_regs[(NUMREGBYTES +
139                    sizeof(unsigned long) - 1) /
140                    sizeof(unsigned long)];
141
142/* to keep track of the CPU which is doing the single stepping*/
143atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
144
145/*
146 * If you are debugging a problem where roundup (the collection of
147 * all other CPUs) is a problem [this should be extremely rare],
148 * then use the nokgdbroundup option to avoid roundup. In that case
149 * the other CPUs might interfere with your debugging context, so
150 * use this with care:
151 */
152static int kgdb_do_roundup = 1;
153
154static int __init opt_nokgdbroundup(char *str)
155{
156    kgdb_do_roundup = 0;
157
158    return 0;
159}
160
161early_param("nokgdbroundup", opt_nokgdbroundup);
162
163/*
164 * Finally, some KGDB code :-)
165 */
166
167/*
168 * Weak aliases for breakpoint management,
169 * can be overriden by architectures when needed:
170 */
171int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
172{
173    int err;
174
175    err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
176    if (err)
177        return err;
178
179    return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
180                  BREAK_INSTR_SIZE);
181}
182
183int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
184{
185    return probe_kernel_write((char *)addr,
186                  (char *)bundle, BREAK_INSTR_SIZE);
187}
188
189int __weak kgdb_validate_break_address(unsigned long addr)
190{
191    char tmp_variable[BREAK_INSTR_SIZE];
192    int err;
193    /* Validate setting the breakpoint and then removing it. In the
194     * remove fails, the kernel needs to emit a bad message because we
195     * are deep trouble not being able to put things back the way we
196     * found them.
197     */
198    err = kgdb_arch_set_breakpoint(addr, tmp_variable);
199    if (err)
200        return err;
201    err = kgdb_arch_remove_breakpoint(addr, tmp_variable);
202    if (err)
203        printk(KERN_ERR "KGDB: Critical breakpoint error, kernel "
204           "memory destroyed at: %lx", addr);
205    return err;
206}
207
208unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
209{
210    return instruction_pointer(regs);
211}
212
213int __weak kgdb_arch_init(void)
214{
215    return 0;
216}
217
218int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
219{
220    return 0;
221}
222
223void __weak
224kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
225{
226    return;
227}
228
229/**
230 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
231 * @regs: Current &struct pt_regs.
232 *
233 * This function will be called if the particular architecture must
234 * disable hardware debugging while it is processing gdb packets or
235 * handling exception.
236 */
237void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
238{
239}
240
241/*
242 * GDB remote protocol parser:
243 */
244
245static int hex(char ch)
246{
247    if ((ch >= 'a') && (ch <= 'f'))
248        return ch - 'a' + 10;
249    if ((ch >= '0') && (ch <= '9'))
250        return ch - '0';
251    if ((ch >= 'A') && (ch <= 'F'))
252        return ch - 'A' + 10;
253    return -1;
254}
255
256/* scan for the sequence $<data>#<checksum> */
257static void get_packet(char *buffer)
258{
259    unsigned char checksum;
260    unsigned char xmitcsum;
261    int count;
262    char ch;
263
264    do {
265        /*
266         * Spin and wait around for the start character, ignore all
267         * other characters:
268         */
269        while ((ch = (kgdb_io_ops->read_char())) != '$')
270            /* nothing */;
271
272        kgdb_connected = 1;
273        checksum = 0;
274        xmitcsum = -1;
275
276        count = 0;
277
278        /*
279         * now, read until a # or end of buffer is found:
280         */
281        while (count < (BUFMAX - 1)) {
282            ch = kgdb_io_ops->read_char();
283            if (ch == '#')
284                break;
285            checksum = checksum + ch;
286            buffer[count] = ch;
287            count = count + 1;
288        }
289        buffer[count] = 0;
290
291        if (ch == '#') {
292            xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
293            xmitcsum += hex(kgdb_io_ops->read_char());
294
295            if (checksum != xmitcsum)
296                /* failed checksum */
297                kgdb_io_ops->write_char('-');
298            else
299                /* successful transfer */
300                kgdb_io_ops->write_char('+');
301            if (kgdb_io_ops->flush)
302                kgdb_io_ops->flush();
303        }
304    } while (checksum != xmitcsum);
305}
306
307/*
308 * Send the packet in buffer.
309 * Check for gdb connection if asked for.
310 */
311static void put_packet(char *buffer)
312{
313    unsigned char checksum;
314    int count;
315    char ch;
316
317    /*
318     * $<packet info>#<checksum>.
319     */
320    while (1) {
321        kgdb_io_ops->write_char('$');
322        checksum = 0;
323        count = 0;
324
325        while ((ch = buffer[count])) {
326            kgdb_io_ops->write_char(ch);
327            checksum += ch;
328            count++;
329        }
330
331        kgdb_io_ops->write_char('#');
332        kgdb_io_ops->write_char(hex_asc_hi(checksum));
333        kgdb_io_ops->write_char(hex_asc_lo(checksum));
334        if (kgdb_io_ops->flush)
335            kgdb_io_ops->flush();
336
337        /* Now see what we get in reply. */
338        ch = kgdb_io_ops->read_char();
339
340        if (ch == 3)
341            ch = kgdb_io_ops->read_char();
342
343        /* If we get an ACK, we are done. */
344        if (ch == '+')
345            return;
346
347        /*
348         * If we get the start of another packet, this means
349         * that GDB is attempting to reconnect. We will NAK
350         * the packet being sent, and stop trying to send this
351         * packet.
352         */
353        if (ch == '$') {
354            kgdb_io_ops->write_char('-');
355            if (kgdb_io_ops->flush)
356                kgdb_io_ops->flush();
357            return;
358        }
359    }
360}
361
362/*
363 * Convert the memory pointed to by mem into hex, placing result in buf.
364 * Return a pointer to the last char put in buf (null). May return an error.
365 */
366int kgdb_mem2hex(char *mem, char *buf, int count)
367{
368    char *tmp;
369    int err;
370
371    /*
372     * We use the upper half of buf as an intermediate buffer for the
373     * raw memory copy. Hex conversion will work against this one.
374     */
375    tmp = buf + count;
376
377    err = probe_kernel_read(tmp, mem, count);
378    if (!err) {
379        while (count > 0) {
380            buf = pack_hex_byte(buf, *tmp);
381            tmp++;
382            count--;
383        }
384
385        *buf = 0;
386    }
387
388    return err;
389}
390
391/*
392 * Copy the binary array pointed to by buf into mem. Fix $, #, and
393 * 0x7d escaped with 0x7d. Return a pointer to the character after
394 * the last byte written.
395 */
396static int kgdb_ebin2mem(char *buf, char *mem, int count)
397{
398    int err = 0;
399    char c;
400
401    while (count-- > 0) {
402        c = *buf++;
403        if (c == 0x7d)
404            c = *buf++ ^ 0x20;
405
406        err = probe_kernel_write(mem, &c, 1);
407        if (err)
408            break;
409
410        mem++;
411    }
412
413    return err;
414}
415
416/*
417 * Convert the hex array pointed to by buf into binary to be placed in mem.
418 * Return a pointer to the character AFTER the last byte written.
419 * May return an error.
420 */
421int kgdb_hex2mem(char *buf, char *mem, int count)
422{
423    char *tmp_raw;
424    char *tmp_hex;
425
426    /*
427     * We use the upper half of buf as an intermediate buffer for the
428     * raw memory that is converted from hex.
429     */
430    tmp_raw = buf + count * 2;
431
432    tmp_hex = tmp_raw - 1;
433    while (tmp_hex >= buf) {
434        tmp_raw--;
435        *tmp_raw = hex(*tmp_hex--);
436        *tmp_raw |= hex(*tmp_hex--) << 4;
437    }
438
439    return probe_kernel_write(mem, tmp_raw, count);
440}
441
442/*
443 * While we find nice hex chars, build a long_val.
444 * Return number of chars processed.
445 */
446int kgdb_hex2long(char **ptr, unsigned long *long_val)
447{
448    int hex_val;
449    int num = 0;
450    int negate = 0;
451
452    *long_val = 0;
453
454    if (**ptr == '-') {
455        negate = 1;
456        (*ptr)++;
457    }
458    while (**ptr) {
459        hex_val = hex(**ptr);
460        if (hex_val < 0)
461            break;
462
463        *long_val = (*long_val << 4) | hex_val;
464        num++;
465        (*ptr)++;
466    }
467
468    if (negate)
469        *long_val = -*long_val;
470
471    return num;
472}
473
474/* Write memory due to an 'M' or 'X' packet. */
475static int write_mem_msg(int binary)
476{
477    char *ptr = &remcom_in_buffer[1];
478    unsigned long addr;
479    unsigned long length;
480    int err;
481
482    if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
483        kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
484        if (binary)
485            err = kgdb_ebin2mem(ptr, (char *)addr, length);
486        else
487            err = kgdb_hex2mem(ptr, (char *)addr, length);
488        if (err)
489            return err;
490        if (CACHE_FLUSH_IS_SAFE)
491            flush_icache_range(addr, addr + length);
492        return 0;
493    }
494
495    return -EINVAL;
496}
497
498static void error_packet(char *pkt, int error)
499{
500    error = -error;
501    pkt[0] = 'E';
502    pkt[1] = hex_asc[(error / 10)];
503    pkt[2] = hex_asc[(error % 10)];
504    pkt[3] = '\0';
505}
506
507/*
508 * Thread ID accessors. We represent a flat TID space to GDB, where
509 * the per CPU idle threads (which under Linux all have PID 0) are
510 * remapped to negative TIDs.
511 */
512
513#define BUF_THREAD_ID_SIZE 16
514
515static char *pack_threadid(char *pkt, unsigned char *id)
516{
517    char *limit;
518
519    limit = pkt + BUF_THREAD_ID_SIZE;
520    while (pkt < limit)
521        pkt = pack_hex_byte(pkt, *id++);
522
523    return pkt;
524}
525
526static void int_to_threadref(unsigned char *id, int value)
527{
528    unsigned char *scan;
529    int i = 4;
530
531    scan = (unsigned char *)id;
532    while (i--)
533        *scan++ = 0;
534    put_unaligned_be32(value, scan);
535}
536
537static struct task_struct *getthread(struct pt_regs *regs, int tid)
538{
539    /*
540     * Non-positive TIDs are remapped to the cpu shadow information
541     */
542    if (tid == 0 || tid == -1)
543        tid = -atomic_read(&kgdb_active) - 2;
544    if (tid < 0) {
545        if (kgdb_info[-tid - 2].task)
546            return kgdb_info[-tid - 2].task;
547        else
548            return idle_task(-tid - 2);
549    }
550
551    /*
552     * find_task_by_pid_ns() does not take the tasklist lock anymore
553     * but is nicely RCU locked - hence is a pretty resilient
554     * thing to use:
555     */
556    return find_task_by_pid_ns(tid, &init_pid_ns);
557}
558
559/*
560 * CPU debug state control:
561 */
562
563#ifdef CONFIG_SMP
564static void kgdb_wait(struct pt_regs *regs)
565{
566    unsigned long flags;
567    int cpu;
568
569    local_irq_save(flags);
570    cpu = raw_smp_processor_id();
571    kgdb_info[cpu].debuggerinfo = regs;
572    kgdb_info[cpu].task = current;
573    /*
574     * Make sure the above info reaches the primary CPU before
575     * our cpu_in_kgdb[] flag setting does:
576     */
577    smp_wmb();
578    atomic_set(&cpu_in_kgdb[cpu], 1);
579
580    /* Wait till primary CPU is done with debugging */
581    while (atomic_read(&passive_cpu_wait[cpu]))
582        cpu_relax();
583
584    kgdb_info[cpu].debuggerinfo = NULL;
585    kgdb_info[cpu].task = NULL;
586
587    /* fix up hardware debug registers on local cpu */
588    if (arch_kgdb_ops.correct_hw_break)
589        arch_kgdb_ops.correct_hw_break();
590
591    /* Signal the primary CPU that we are done: */
592    atomic_set(&cpu_in_kgdb[cpu], 0);
593    touch_softlockup_watchdog();
594    clocksource_touch_watchdog();
595    local_irq_restore(flags);
596}
597#endif
598
599/*
600 * Some architectures need cache flushes when we set/clear a
601 * breakpoint:
602 */
603static void kgdb_flush_swbreak_addr(unsigned long addr)
604{
605    if (!CACHE_FLUSH_IS_SAFE)
606        return;
607
608    if (current->mm && current->mm->mmap_cache) {
609        flush_cache_range(current->mm->mmap_cache,
610                  addr, addr + BREAK_INSTR_SIZE);
611    }
612    /* Force flush instruction cache if it was outside the mm */
613    flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
614}
615
616/*
617 * SW breakpoint management:
618 */
619static int kgdb_activate_sw_breakpoints(void)
620{
621    unsigned long addr;
622    int error = 0;
623    int i;
624
625    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
626        if (kgdb_break[i].state != BP_SET)
627            continue;
628
629        addr = kgdb_break[i].bpt_addr;
630        error = kgdb_arch_set_breakpoint(addr,
631                kgdb_break[i].saved_instr);
632        if (error)
633            return error;
634
635        kgdb_flush_swbreak_addr(addr);
636        kgdb_break[i].state = BP_ACTIVE;
637    }
638    return 0;
639}
640
641static int kgdb_set_sw_break(unsigned long addr)
642{
643    int err = kgdb_validate_break_address(addr);
644    int breakno = -1;
645    int i;
646
647    if (err)
648        return err;
649
650    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
651        if ((kgdb_break[i].state == BP_SET) &&
652                    (kgdb_break[i].bpt_addr == addr))
653            return -EEXIST;
654    }
655    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
656        if (kgdb_break[i].state == BP_REMOVED &&
657                    kgdb_break[i].bpt_addr == addr) {
658            breakno = i;
659            break;
660        }
661    }
662
663    if (breakno == -1) {
664        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
665            if (kgdb_break[i].state == BP_UNDEFINED) {
666                breakno = i;
667                break;
668            }
669        }
670    }
671
672    if (breakno == -1)
673        return -E2BIG;
674
675    kgdb_break[breakno].state = BP_SET;
676    kgdb_break[breakno].type = BP_BREAKPOINT;
677    kgdb_break[breakno].bpt_addr = addr;
678
679    return 0;
680}
681
682static int kgdb_deactivate_sw_breakpoints(void)
683{
684    unsigned long addr;
685    int error = 0;
686    int i;
687
688    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
689        if (kgdb_break[i].state != BP_ACTIVE)
690            continue;
691        addr = kgdb_break[i].bpt_addr;
692        error = kgdb_arch_remove_breakpoint(addr,
693                    kgdb_break[i].saved_instr);
694        if (error)
695            return error;
696
697        kgdb_flush_swbreak_addr(addr);
698        kgdb_break[i].state = BP_SET;
699    }
700    return 0;
701}
702
703static int kgdb_remove_sw_break(unsigned long addr)
704{
705    int i;
706
707    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
708        if ((kgdb_break[i].state == BP_SET) &&
709                (kgdb_break[i].bpt_addr == addr)) {
710            kgdb_break[i].state = BP_REMOVED;
711            return 0;
712        }
713    }
714    return -ENOENT;
715}
716
717int kgdb_isremovedbreak(unsigned long addr)
718{
719    int i;
720
721    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
722        if ((kgdb_break[i].state == BP_REMOVED) &&
723                    (kgdb_break[i].bpt_addr == addr))
724            return 1;
725    }
726    return 0;
727}
728
729static int remove_all_break(void)
730{
731    unsigned long addr;
732    int error;
733    int i;
734
735    /* Clear memory breakpoints. */
736    for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
737        if (kgdb_break[i].state != BP_ACTIVE)
738            goto setundefined;
739        addr = kgdb_break[i].bpt_addr;
740        error = kgdb_arch_remove_breakpoint(addr,
741                kgdb_break[i].saved_instr);
742        if (error)
743            printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
744               addr);
745setundefined:
746        kgdb_break[i].state = BP_UNDEFINED;
747    }
748
749    /* Clear hardware breakpoints. */
750    if (arch_kgdb_ops.remove_all_hw_break)
751        arch_kgdb_ops.remove_all_hw_break();
752
753    return 0;
754}
755
756/*
757 * Remap normal tasks to their real PID,
758 * CPU shadow threads are mapped to -CPU - 2
759 */
760static inline int shadow_pid(int realpid)
761{
762    if (realpid)
763        return realpid;
764
765    return -raw_smp_processor_id() - 2;
766}
767
768static char gdbmsgbuf[BUFMAX + 1];
769
770static void kgdb_msg_write(const char *s, int len)
771{
772    char *bufptr;
773    int wcount;
774    int i;
775
776    /* 'O'utput */
777    gdbmsgbuf[0] = 'O';
778
779    /* Fill and send buffers... */
780    while (len > 0) {
781        bufptr = gdbmsgbuf + 1;
782
783        /* Calculate how many this time */
784        if ((len << 1) > (BUFMAX - 2))
785            wcount = (BUFMAX - 2) >> 1;
786        else
787            wcount = len;
788
789        /* Pack in hex chars */
790        for (i = 0; i < wcount; i++)
791            bufptr = pack_hex_byte(bufptr, s[i]);
792        *bufptr = '\0';
793
794        /* Move up */
795        s += wcount;
796        len -= wcount;
797
798        /* Write packet */
799        put_packet(gdbmsgbuf);
800    }
801}
802
803/*
804 * Return true if there is a valid kgdb I/O module. Also if no
805 * debugger is attached a message can be printed to the console about
806 * waiting for the debugger to attach.
807 *
808 * The print_wait argument is only to be true when called from inside
809 * the core kgdb_handle_exception, because it will wait for the
810 * debugger to attach.
811 */
812static int kgdb_io_ready(int print_wait)
813{
814    if (!kgdb_io_ops)
815        return 0;
816    if (kgdb_connected)
817        return 1;
818    if (atomic_read(&kgdb_setting_breakpoint))
819        return 1;
820    if (print_wait)
821        printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
822    return 1;
823}
824
825/*
826 * All the functions that start with gdb_cmd are the various
827 * operations to implement the handlers for the gdbserial protocol
828 * where KGDB is communicating with an external debugger
829 */
830
831/* Handle the '?' status packets */
832static void gdb_cmd_status(struct kgdb_state *ks)
833{
834    /*
835     * We know that this packet is only sent
836     * during initial connect. So to be safe,
837     * we clear out our breakpoints now in case
838     * GDB is reconnecting.
839     */
840    remove_all_break();
841
842    remcom_out_buffer[0] = 'S';
843    pack_hex_byte(&remcom_out_buffer[1], ks->signo);
844}
845
846/* Handle the 'g' get registers request */
847static void gdb_cmd_getregs(struct kgdb_state *ks)
848{
849    struct task_struct *thread;
850    void *local_debuggerinfo;
851    int i;
852
853    thread = kgdb_usethread;
854    if (!thread) {
855        thread = kgdb_info[ks->cpu].task;
856        local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
857    } else {
858        local_debuggerinfo = NULL;
859        for_each_online_cpu(i) {
860            /*
861             * Try to find the task on some other
862             * or possibly this node if we do not
863             * find the matching task then we try
864             * to approximate the results.
865             */
866            if (thread == kgdb_info[i].task)
867                local_debuggerinfo = kgdb_info[i].debuggerinfo;
868        }
869    }
870
871    /*
872     * All threads that don't have debuggerinfo should be
873     * in __schedule() sleeping, since all other CPUs
874     * are in kgdb_wait, and thus have debuggerinfo.
875     */
876    if (local_debuggerinfo) {
877        pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
878    } else {
879        /*
880         * Pull stuff saved during switch_to; nothing
881         * else is accessible (or even particularly
882         * relevant).
883         *
884         * This should be enough for a stack trace.
885         */
886        sleeping_thread_to_gdb_regs(gdb_regs, thread);
887    }
888    kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
889}
890
891/* Handle the 'G' set registers request */
892static void gdb_cmd_setregs(struct kgdb_state *ks)
893{
894    kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
895
896    if (kgdb_usethread && kgdb_usethread != current) {
897        error_packet(remcom_out_buffer, -EINVAL);
898    } else {
899        gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
900        strcpy(remcom_out_buffer, "OK");
901    }
902}
903
904/* Handle the 'm' memory read bytes */
905static void gdb_cmd_memread(struct kgdb_state *ks)
906{
907    char *ptr = &remcom_in_buffer[1];
908    unsigned long length;
909    unsigned long addr;
910    int err;
911
912    if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
913                    kgdb_hex2long(&ptr, &length) > 0) {
914        err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
915        if (err)
916            error_packet(remcom_out_buffer, err);
917    } else {
918        error_packet(remcom_out_buffer, -EINVAL);
919    }
920}
921
922/* Handle the 'M' memory write bytes */
923static void gdb_cmd_memwrite(struct kgdb_state *ks)
924{
925    int err = write_mem_msg(0);
926
927    if (err)
928        error_packet(remcom_out_buffer, err);
929    else
930        strcpy(remcom_out_buffer, "OK");
931}
932
933/* Handle the 'X' memory binary write bytes */
934static void gdb_cmd_binwrite(struct kgdb_state *ks)
935{
936    int err = write_mem_msg(1);
937
938    if (err)
939        error_packet(remcom_out_buffer, err);
940    else
941        strcpy(remcom_out_buffer, "OK");
942}
943
944/* Handle the 'D' or 'k', detach or kill packets */
945static void gdb_cmd_detachkill(struct kgdb_state *ks)
946{
947    int error;
948
949    /* The detach case */
950    if (remcom_in_buffer[0] == 'D') {
951        error = remove_all_break();
952        if (error < 0) {
953            error_packet(remcom_out_buffer, error);
954        } else {
955            strcpy(remcom_out_buffer, "OK");
956            kgdb_connected = 0;
957        }
958        put_packet(remcom_out_buffer);
959    } else {
960        /*
961         * Assume the kill case, with no exit code checking,
962         * trying to force detach the debugger:
963         */
964        remove_all_break();
965        kgdb_connected = 0;
966    }
967}
968
969/* Handle the 'R' reboot packets */
970static int gdb_cmd_reboot(struct kgdb_state *ks)
971{
972    /* For now, only honor R0 */
973    if (strcmp(remcom_in_buffer, "R0") == 0) {
974        printk(KERN_CRIT "Executing emergency reboot\n");
975        strcpy(remcom_out_buffer, "OK");
976        put_packet(remcom_out_buffer);
977
978        /*
979         * Execution should not return from
980         * machine_emergency_restart()
981         */
982        machine_emergency_restart();
983        kgdb_connected = 0;
984
985        return 1;
986    }
987    return 0;
988}
989
990/* Handle the 'q' query packets */
991static void gdb_cmd_query(struct kgdb_state *ks)
992{
993    struct task_struct *g;
994    struct task_struct *p;
995    unsigned char thref[8];
996    char *ptr;
997    int i;
998    int cpu;
999    int finished = 0;
1000
1001    switch (remcom_in_buffer[1]) {
1002    case 's':
1003    case 'f':
1004        if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
1005            error_packet(remcom_out_buffer, -EINVAL);
1006            break;
1007        }
1008
1009        i = 0;
1010        remcom_out_buffer[0] = 'm';
1011        ptr = remcom_out_buffer + 1;
1012        if (remcom_in_buffer[1] == 'f') {
1013            /* Each cpu is a shadow thread */
1014            for_each_online_cpu(cpu) {
1015                ks->thr_query = 0;
1016                int_to_threadref(thref, -cpu - 2);
1017                pack_threadid(ptr, thref);
1018                ptr += BUF_THREAD_ID_SIZE;
1019                *(ptr++) = ',';
1020                i++;
1021            }
1022        }
1023
1024        do_each_thread(g, p) {
1025            if (i >= ks->thr_query && !finished) {
1026                int_to_threadref(thref, p->pid);
1027                pack_threadid(ptr, thref);
1028                ptr += BUF_THREAD_ID_SIZE;
1029                *(ptr++) = ',';
1030                ks->thr_query++;
1031                if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0)
1032                    finished = 1;
1033            }
1034            i++;
1035        } while_each_thread(g, p);
1036
1037        *(--ptr) = '\0';
1038        break;
1039
1040    case 'C':
1041        /* Current thread id */
1042        strcpy(remcom_out_buffer, "QC");
1043        ks->threadid = shadow_pid(current->pid);
1044        int_to_threadref(thref, ks->threadid);
1045        pack_threadid(remcom_out_buffer + 2, thref);
1046        break;
1047    case 'T':
1048        if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1049            error_packet(remcom_out_buffer, -EINVAL);
1050            break;
1051        }
1052        ks->threadid = 0;
1053        ptr = remcom_in_buffer + 17;
1054        kgdb_hex2long(&ptr, &ks->threadid);
1055        if (!getthread(ks->linux_regs, ks->threadid)) {
1056            error_packet(remcom_out_buffer, -EINVAL);
1057            break;
1058        }
1059        if ((int)ks->threadid > 0) {
1060            kgdb_mem2hex(getthread(ks->linux_regs,
1061                    ks->threadid)->comm,
1062                    remcom_out_buffer, 16);
1063        } else {
1064            static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1065
1066            sprintf(tmpstr, "shadowCPU%d",
1067                    (int)(-ks->threadid - 2));
1068            kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1069        }
1070        break;
1071    }
1072}
1073
1074/* Handle the 'H' task query packets */
1075static void gdb_cmd_task(struct kgdb_state *ks)
1076{
1077    struct task_struct *thread;
1078    char *ptr;
1079
1080    switch (remcom_in_buffer[1]) {
1081    case 'g':
1082        ptr = &remcom_in_buffer[2];
1083        kgdb_hex2long(&ptr, &ks->threadid);
1084        thread = getthread(ks->linux_regs, ks->threadid);
1085        if (!thread && ks->threadid > 0) {
1086            error_packet(remcom_out_buffer, -EINVAL);
1087            break;
1088        }
1089        kgdb_usethread = thread;
1090        ks->kgdb_usethreadid = ks->threadid;
1091        strcpy(remcom_out_buffer, "OK");
1092        break;
1093    case 'c':
1094        ptr = &remcom_in_buffer[2];
1095        kgdb_hex2long(&ptr, &ks->threadid);
1096        if (!ks->threadid) {
1097            kgdb_contthread = NULL;
1098        } else {
1099            thread = getthread(ks->linux_regs, ks->threadid);
1100            if (!thread && ks->threadid > 0) {
1101                error_packet(remcom_out_buffer, -EINVAL);
1102                break;
1103            }
1104            kgdb_contthread = thread;
1105        }
1106        strcpy(remcom_out_buffer, "OK");
1107        break;
1108    }
1109}
1110
1111/* Handle the 'T' thread query packets */
1112static void gdb_cmd_thread(struct kgdb_state *ks)
1113{
1114    char *ptr = &remcom_in_buffer[1];
1115    struct task_struct *thread;
1116
1117    kgdb_hex2long(&ptr, &ks->threadid);
1118    thread = getthread(ks->linux_regs, ks->threadid);
1119    if (thread)
1120        strcpy(remcom_out_buffer, "OK");
1121    else
1122        error_packet(remcom_out_buffer, -EINVAL);
1123}
1124
1125/* Handle the 'z' or 'Z' breakpoint remove or set packets */
1126static void gdb_cmd_break(struct kgdb_state *ks)
1127{
1128    /*
1129     * Since GDB-5.3, it's been drafted that '0' is a software
1130     * breakpoint, '1' is a hardware breakpoint, so let's do that.
1131     */
1132    char *bpt_type = &remcom_in_buffer[1];
1133    char *ptr = &remcom_in_buffer[2];
1134    unsigned long addr;
1135    unsigned long length;
1136    int error = 0;
1137
1138    if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1139        /* Unsupported */
1140        if (*bpt_type > '4')
1141            return;
1142    } else {
1143        if (*bpt_type != '0' && *bpt_type != '1')
1144            /* Unsupported. */
1145            return;
1146    }
1147
1148    /*
1149     * Test if this is a hardware breakpoint, and
1150     * if we support it:
1151     */
1152    if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1153        /* Unsupported. */
1154        return;
1155
1156    if (*(ptr++) != ',') {
1157        error_packet(remcom_out_buffer, -EINVAL);
1158        return;
1159    }
1160    if (!kgdb_hex2long(&ptr, &addr)) {
1161        error_packet(remcom_out_buffer, -EINVAL);
1162        return;
1163    }
1164    if (*(ptr++) != ',' ||
1165        !kgdb_hex2long(&ptr, &length)) {
1166        error_packet(remcom_out_buffer, -EINVAL);
1167        return;
1168    }
1169
1170    if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1171        error = kgdb_set_sw_break(addr);
1172    else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1173        error = kgdb_remove_sw_break(addr);
1174    else if (remcom_in_buffer[0] == 'Z')
1175        error = arch_kgdb_ops.set_hw_breakpoint(addr,
1176            (int)length, *bpt_type - '0');
1177    else if (remcom_in_buffer[0] == 'z')
1178        error = arch_kgdb_ops.remove_hw_breakpoint(addr,
1179            (int) length, *bpt_type - '0');
1180
1181    if (error == 0)
1182        strcpy(remcom_out_buffer, "OK");
1183    else
1184        error_packet(remcom_out_buffer, error);
1185}
1186
1187/* Handle the 'C' signal / exception passing packets */
1188static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1189{
1190    /* C09 == pass exception
1191     * C15 == detach kgdb, pass exception
1192     */
1193    if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1194
1195        ks->pass_exception = 1;
1196        remcom_in_buffer[0] = 'c';
1197
1198    } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1199
1200        ks->pass_exception = 1;
1201        remcom_in_buffer[0] = 'D';
1202        remove_all_break();
1203        kgdb_connected = 0;
1204        return 1;
1205
1206    } else {
1207        error_packet(remcom_out_buffer, -EINVAL);
1208        return 0;
1209    }
1210
1211    /* Indicate fall through */
1212    return -1;
1213}
1214
1215/*
1216 * This function performs all gdbserial command procesing
1217 */
1218static int gdb_serial_stub(struct kgdb_state *ks)
1219{
1220    int error = 0;
1221    int tmp;
1222
1223    /* Clear the out buffer. */
1224    memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1225
1226    if (kgdb_connected) {
1227        unsigned char thref[8];
1228        char *ptr;
1229
1230        /* Reply to host that an exception has occurred */
1231        ptr = remcom_out_buffer;
1232        *ptr++ = 'T';
1233        ptr = pack_hex_byte(ptr, ks->signo);
1234        ptr += strlen(strcpy(ptr, "thread:"));
1235        int_to_threadref(thref, shadow_pid(current->pid));
1236        ptr = pack_threadid(ptr, thref);
1237        *ptr++ = ';';
1238        put_packet(remcom_out_buffer);
1239    }
1240
1241    kgdb_usethread = kgdb_info[ks->cpu].task;
1242    ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1243    ks->pass_exception = 0;
1244
1245    while (1) {
1246        error = 0;
1247
1248        /* Clear the out buffer. */
1249        memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1250
1251        get_packet(remcom_in_buffer);
1252
1253        switch (remcom_in_buffer[0]) {
1254        case '?': /* gdbserial status */
1255            gdb_cmd_status(ks);
1256            break;
1257        case 'g': /* return the value of the CPU registers */
1258            gdb_cmd_getregs(ks);
1259            break;
1260        case 'G': /* set the value of the CPU registers - return OK */
1261            gdb_cmd_setregs(ks);
1262            break;
1263        case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1264            gdb_cmd_memread(ks);
1265            break;
1266        case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1267            gdb_cmd_memwrite(ks);
1268            break;
1269        case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1270            gdb_cmd_binwrite(ks);
1271            break;
1272            /* kill or detach. KGDB should treat this like a
1273             * continue.
1274             */
1275        case 'D': /* Debugger detach */
1276        case 'k': /* Debugger detach via kill */
1277            gdb_cmd_detachkill(ks);
1278            goto default_handle;
1279        case 'R': /* Reboot */
1280            if (gdb_cmd_reboot(ks))
1281                goto default_handle;
1282            break;
1283        case 'q': /* query command */
1284            gdb_cmd_query(ks);
1285            break;
1286        case 'H': /* task related */
1287            gdb_cmd_task(ks);
1288            break;
1289        case 'T': /* Query thread status */
1290            gdb_cmd_thread(ks);
1291            break;
1292        case 'z': /* Break point remove */
1293        case 'Z': /* Break point set */
1294            gdb_cmd_break(ks);
1295            break;
1296        case 'C': /* Exception passing */
1297            tmp = gdb_cmd_exception_pass(ks);
1298            if (tmp > 0)
1299                goto default_handle;
1300            if (tmp == 0)
1301                break;
1302            /* Fall through on tmp < 0 */
1303        case 'c': /* Continue packet */
1304        case 's': /* Single step packet */
1305            if (kgdb_contthread && kgdb_contthread != current) {
1306                /* Can't switch threads in kgdb */
1307                error_packet(remcom_out_buffer, -EINVAL);
1308                break;
1309            }
1310            kgdb_activate_sw_breakpoints();
1311            /* Fall through to default processing */
1312        default:
1313default_handle:
1314            error = kgdb_arch_handle_exception(ks->ex_vector,
1315                        ks->signo,
1316                        ks->err_code,
1317                        remcom_in_buffer,
1318                        remcom_out_buffer,
1319                        ks->linux_regs);
1320            /*
1321             * Leave cmd processing on error, detach,
1322             * kill, continue, or single step.
1323             */
1324            if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1325                remcom_in_buffer[0] == 'k') {
1326                error = 0;
1327                goto kgdb_exit;
1328            }
1329
1330        }
1331
1332        /* reply to the request */
1333        put_packet(remcom_out_buffer);
1334    }
1335
1336kgdb_exit:
1337    if (ks->pass_exception)
1338        error = 1;
1339    return error;
1340}
1341
1342static int kgdb_reenter_check(struct kgdb_state *ks)
1343{
1344    unsigned long addr;
1345
1346    if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1347        return 0;
1348
1349    /* Panic on recursive debugger calls: */
1350    exception_level++;
1351    addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1352    kgdb_deactivate_sw_breakpoints();
1353
1354    /*
1355     * If the break point removed ok at the place exception
1356     * occurred, try to recover and print a warning to the end
1357     * user because the user planted a breakpoint in a place that
1358     * KGDB needs in order to function.
1359     */
1360    if (kgdb_remove_sw_break(addr) == 0) {
1361        exception_level = 0;
1362        kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1363        kgdb_activate_sw_breakpoints();
1364        printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1365            addr);
1366        WARN_ON_ONCE(1);
1367
1368        return 1;
1369    }
1370    remove_all_break();
1371    kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1372
1373    if (exception_level > 1) {
1374        dump_stack();
1375        panic("Recursive entry to debugger");
1376    }
1377
1378    printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1379    dump_stack();
1380    panic("Recursive entry to debugger");
1381
1382    return 1;
1383}
1384
1385/*
1386 * kgdb_handle_exception() - main entry point from a kernel exception
1387 *
1388 * Locking hierarchy:
1389 * interface locks, if any (begin_session)
1390 * kgdb lock (kgdb_active)
1391 */
1392int
1393kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1394{
1395    struct kgdb_state kgdb_var;
1396    struct kgdb_state *ks = &kgdb_var;
1397    unsigned long flags;
1398    int error = 0;
1399    int i, cpu;
1400
1401    ks->cpu = raw_smp_processor_id();
1402    ks->ex_vector = evector;
1403    ks->signo = signo;
1404    ks->ex_vector = evector;
1405    ks->err_code = ecode;
1406    ks->kgdb_usethreadid = 0;
1407    ks->linux_regs = regs;
1408
1409    if (kgdb_reenter_check(ks))
1410        return 0; /* Ouch, double exception ! */
1411
1412acquirelock:
1413    /*
1414     * Interrupts will be restored by the 'trap return' code, except when
1415     * single stepping.
1416     */
1417    local_irq_save(flags);
1418
1419    cpu = raw_smp_processor_id();
1420
1421    /*
1422     * Acquire the kgdb_active lock:
1423     */
1424    while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1425        cpu_relax();
1426
1427    /*
1428     * Do not start the debugger connection on this CPU if the last
1429     * instance of the exception handler wanted to come into the
1430     * debugger on a different CPU via a single step
1431     */
1432    if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1433        atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1434
1435        atomic_set(&kgdb_active, -1);
1436        touch_softlockup_watchdog();
1437        clocksource_touch_watchdog();
1438        local_irq_restore(flags);
1439
1440        goto acquirelock;
1441    }
1442
1443    if (!kgdb_io_ready(1)) {
1444        error = 1;
1445        goto kgdb_restore; /* No I/O connection, so resume the system */
1446    }
1447
1448    /*
1449     * Don't enter if we have hit a removed breakpoint.
1450     */
1451    if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1452        goto kgdb_restore;
1453
1454    /* Call the I/O driver's pre_exception routine */
1455    if (kgdb_io_ops->pre_exception)
1456        kgdb_io_ops->pre_exception();
1457
1458    kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1459    kgdb_info[ks->cpu].task = current;
1460
1461    kgdb_disable_hw_debug(ks->linux_regs);
1462
1463    /*
1464     * Get the passive CPU lock which will hold all the non-primary
1465     * CPU in a spin state while the debugger is active
1466     */
1467    if (!kgdb_single_step) {
1468        for (i = 0; i < NR_CPUS; i++)
1469            atomic_set(&passive_cpu_wait[i], 1);
1470    }
1471
1472    /*
1473     * spin_lock code is good enough as a barrier so we don't
1474     * need one here:
1475     */
1476    atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1477
1478#ifdef CONFIG_SMP
1479    /* Signal the other CPUs to enter kgdb_wait() */
1480    if ((!kgdb_single_step) && kgdb_do_roundup)
1481        kgdb_roundup_cpus(flags);
1482#endif
1483
1484    /*
1485     * Wait for the other CPUs to be notified and be waiting for us:
1486     */
1487    for_each_online_cpu(i) {
1488        while (!atomic_read(&cpu_in_kgdb[i]))
1489            cpu_relax();
1490    }
1491
1492    /*
1493     * At this point the primary processor is completely
1494     * in the debugger and all secondary CPUs are quiescent
1495     */
1496    kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1497    kgdb_deactivate_sw_breakpoints();
1498    kgdb_single_step = 0;
1499    kgdb_contthread = current;
1500    exception_level = 0;
1501
1502    /* Talk to debugger with gdbserial protocol */
1503    error = gdb_serial_stub(ks);
1504
1505    /* Call the I/O driver's post_exception routine */
1506    if (kgdb_io_ops->post_exception)
1507        kgdb_io_ops->post_exception();
1508
1509    kgdb_info[ks->cpu].debuggerinfo = NULL;
1510    kgdb_info[ks->cpu].task = NULL;
1511    atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1512
1513    if (!kgdb_single_step) {
1514        for (i = NR_CPUS-1; i >= 0; i--)
1515            atomic_set(&passive_cpu_wait[i], 0);
1516        /*
1517         * Wait till all the CPUs have quit
1518         * from the debugger.
1519         */
1520        for_each_online_cpu(i) {
1521            while (atomic_read(&cpu_in_kgdb[i]))
1522                cpu_relax();
1523        }
1524    }
1525
1526kgdb_restore:
1527    /* Free kgdb_active */
1528    atomic_set(&kgdb_active, -1);
1529    touch_softlockup_watchdog();
1530    clocksource_touch_watchdog();
1531    local_irq_restore(flags);
1532
1533    return error;
1534}
1535
1536int kgdb_nmicallback(int cpu, void *regs)
1537{
1538#ifdef CONFIG_SMP
1539    if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1540            atomic_read(&kgdb_active) != cpu &&
1541            atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) {
1542        kgdb_wait((struct pt_regs *)regs);
1543        return 0;
1544    }
1545#endif
1546    return 1;
1547}
1548
1549static void kgdb_console_write(struct console *co, const char *s,
1550   unsigned count)
1551{
1552    unsigned long flags;
1553
1554    /* If we're debugging, or KGDB has not connected, don't try
1555     * and print. */
1556    if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1557        return;
1558
1559    local_irq_save(flags);
1560    kgdb_msg_write(s, count);
1561    local_irq_restore(flags);
1562}
1563
1564static struct console kgdbcons = {
1565    .name = "kgdb",
1566    .write = kgdb_console_write,
1567    .flags = CON_PRINTBUFFER | CON_ENABLED,
1568    .index = -1,
1569};
1570
1571#ifdef CONFIG_MAGIC_SYSRQ
1572static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1573{
1574    if (!kgdb_io_ops) {
1575        printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1576        return;
1577    }
1578    if (!kgdb_connected)
1579        printk(KERN_CRIT "Entering KGDB\n");
1580
1581    kgdb_breakpoint();
1582}
1583
1584static struct sysrq_key_op sysrq_gdb_op = {
1585    .handler = sysrq_handle_gdb,
1586    .help_msg = "debug(G)",
1587    .action_msg = "DEBUG",
1588};
1589#endif
1590
1591static void kgdb_register_callbacks(void)
1592{
1593    if (!kgdb_io_module_registered) {
1594        kgdb_io_module_registered = 1;
1595        kgdb_arch_init();
1596#ifdef CONFIG_MAGIC_SYSRQ
1597        register_sysrq_key('g', &sysrq_gdb_op);
1598#endif
1599        if (kgdb_use_con && !kgdb_con_registered) {
1600            register_console(&kgdbcons);
1601            kgdb_con_registered = 1;
1602        }
1603    }
1604}
1605
1606static void kgdb_unregister_callbacks(void)
1607{
1608    /*
1609     * When this routine is called KGDB should unregister from the
1610     * panic handler and clean up, making sure it is not handling any
1611     * break exceptions at the time.
1612     */
1613    if (kgdb_io_module_registered) {
1614        kgdb_io_module_registered = 0;
1615        kgdb_arch_exit();
1616#ifdef CONFIG_MAGIC_SYSRQ
1617        unregister_sysrq_key('g', &sysrq_gdb_op);
1618#endif
1619        if (kgdb_con_registered) {
1620            unregister_console(&kgdbcons);
1621            kgdb_con_registered = 0;
1622        }
1623    }
1624}
1625
1626static void kgdb_initial_breakpoint(void)
1627{
1628    kgdb_break_asap = 0;
1629
1630    printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1631    kgdb_breakpoint();
1632}
1633
1634/**
1635 * kgdb_register_io_module - register KGDB IO module
1636 * @new_kgdb_io_ops: the io ops vector
1637 *
1638 * Register it with the KGDB core.
1639 */
1640int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1641{
1642    int err;
1643
1644    spin_lock(&kgdb_registration_lock);
1645
1646    if (kgdb_io_ops) {
1647        spin_unlock(&kgdb_registration_lock);
1648
1649        printk(KERN_ERR "kgdb: Another I/O driver is already "
1650                "registered with KGDB.\n");
1651        return -EBUSY;
1652    }
1653
1654    if (new_kgdb_io_ops->init) {
1655        err = new_kgdb_io_ops->init();
1656        if (err) {
1657            spin_unlock(&kgdb_registration_lock);
1658            return err;
1659        }
1660    }
1661
1662    kgdb_io_ops = new_kgdb_io_ops;
1663
1664    spin_unlock(&kgdb_registration_lock);
1665
1666    printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1667           new_kgdb_io_ops->name);
1668
1669    /* Arm KGDB now. */
1670    kgdb_register_callbacks();
1671
1672    if (kgdb_break_asap)
1673        kgdb_initial_breakpoint();
1674
1675    return 0;
1676}
1677EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1678
1679/**
1680 * kkgdb_unregister_io_module - unregister KGDB IO module
1681 * @old_kgdb_io_ops: the io ops vector
1682 *
1683 * Unregister it with the KGDB core.
1684 */
1685void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1686{
1687    BUG_ON(kgdb_connected);
1688
1689    /*
1690     * KGDB is no longer able to communicate out, so
1691     * unregister our callbacks and reset state.
1692     */
1693    kgdb_unregister_callbacks();
1694
1695    spin_lock(&kgdb_registration_lock);
1696
1697    WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1698    kgdb_io_ops = NULL;
1699
1700    spin_unlock(&kgdb_registration_lock);
1701
1702    printk(KERN_INFO
1703        "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1704        old_kgdb_io_ops->name);
1705}
1706EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1707
1708/**
1709 * kgdb_breakpoint - generate breakpoint exception
1710 *
1711 * This function will generate a breakpoint exception. It is used at the
1712 * beginning of a program to sync up with a debugger and can be used
1713 * otherwise as a quick means to stop program execution and "break" into
1714 * the debugger.
1715 */
1716void kgdb_breakpoint(void)
1717{
1718    atomic_set(&kgdb_setting_breakpoint, 1);
1719    wmb(); /* Sync point before breakpoint */
1720    arch_kgdb_breakpoint();
1721    wmb(); /* Sync point after breakpoint */
1722    atomic_set(&kgdb_setting_breakpoint, 0);
1723}
1724EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1725
1726static int __init opt_kgdb_wait(char *str)
1727{
1728    kgdb_break_asap = 1;
1729
1730    if (kgdb_io_module_registered)
1731        kgdb_initial_breakpoint();
1732
1733    return 0;
1734}
1735
1736early_param("kgdbwait", opt_kgdb_wait);
1737

Archive Download this file



interactive