Root/kernel/posix-cpu-timers.c

1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <linux/errno.h>
8#include <linux/math64.h>
9#include <asm/uaccess.h>
10#include <linux/kernel_stat.h>
11#include <trace/events/timer.h>
12
13/*
14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 */
16void update_rlimit_cpu(unsigned long rlim_new)
17{
18    cputime_t cputime = secs_to_cputime(rlim_new);
19    struct signal_struct *const sig = current->signal;
20
21    if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
22        cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
23        spin_lock_irq(&current->sighand->siglock);
24        set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25        spin_unlock_irq(&current->sighand->siglock);
26    }
27}
28
29static int check_clock(const clockid_t which_clock)
30{
31    int error = 0;
32    struct task_struct *p;
33    const pid_t pid = CPUCLOCK_PID(which_clock);
34
35    if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36        return -EINVAL;
37
38    if (pid == 0)
39        return 0;
40
41    read_lock(&tasklist_lock);
42    p = find_task_by_vpid(pid);
43    if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44           same_thread_group(p, current) : thread_group_leader(p))) {
45        error = -EINVAL;
46    }
47    read_unlock(&tasklist_lock);
48
49    return error;
50}
51
52static inline union cpu_time_count
53timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54{
55    union cpu_time_count ret;
56    ret.sched = 0; /* high half always zero when .cpu used */
57    if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58        ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59    } else {
60        ret.cpu = timespec_to_cputime(tp);
61    }
62    return ret;
63}
64
65static void sample_to_timespec(const clockid_t which_clock,
66                   union cpu_time_count cpu,
67                   struct timespec *tp)
68{
69    if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70        *tp = ns_to_timespec(cpu.sched);
71    else
72        cputime_to_timespec(cpu.cpu, tp);
73}
74
75static inline int cpu_time_before(const clockid_t which_clock,
76                  union cpu_time_count now,
77                  union cpu_time_count then)
78{
79    if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80        return now.sched < then.sched;
81    } else {
82        return cputime_lt(now.cpu, then.cpu);
83    }
84}
85static inline void cpu_time_add(const clockid_t which_clock,
86                union cpu_time_count *acc,
87                    union cpu_time_count val)
88{
89    if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90        acc->sched += val.sched;
91    } else {
92        acc->cpu = cputime_add(acc->cpu, val.cpu);
93    }
94}
95static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96                        union cpu_time_count a,
97                        union cpu_time_count b)
98{
99    if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100        a.sched -= b.sched;
101    } else {
102        a.cpu = cputime_sub(a.cpu, b.cpu);
103    }
104    return a;
105}
106
107/*
108 * Divide and limit the result to res >= 1
109 *
110 * This is necessary to prevent signal delivery starvation, when the result of
111 * the division would be rounded down to 0.
112 */
113static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
114{
115    cputime_t res = cputime_div(time, div);
116
117    return max_t(cputime_t, res, 1);
118}
119
120/*
121 * Update expiry time from increment, and increase overrun count,
122 * given the current clock sample.
123 */
124static void bump_cpu_timer(struct k_itimer *timer,
125                  union cpu_time_count now)
126{
127    int i;
128
129    if (timer->it.cpu.incr.sched == 0)
130        return;
131
132    if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
133        unsigned long long delta, incr;
134
135        if (now.sched < timer->it.cpu.expires.sched)
136            return;
137        incr = timer->it.cpu.incr.sched;
138        delta = now.sched + incr - timer->it.cpu.expires.sched;
139        /* Don't use (incr*2 < delta), incr*2 might overflow. */
140        for (i = 0; incr < delta - incr; i++)
141            incr = incr << 1;
142        for (; i >= 0; incr >>= 1, i--) {
143            if (delta < incr)
144                continue;
145            timer->it.cpu.expires.sched += incr;
146            timer->it_overrun += 1 << i;
147            delta -= incr;
148        }
149    } else {
150        cputime_t delta, incr;
151
152        if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
153            return;
154        incr = timer->it.cpu.incr.cpu;
155        delta = cputime_sub(cputime_add(now.cpu, incr),
156                    timer->it.cpu.expires.cpu);
157        /* Don't use (incr*2 < delta), incr*2 might overflow. */
158        for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
159                 incr = cputime_add(incr, incr);
160        for (; i >= 0; incr = cputime_halve(incr), i--) {
161            if (cputime_lt(delta, incr))
162                continue;
163            timer->it.cpu.expires.cpu =
164                cputime_add(timer->it.cpu.expires.cpu, incr);
165            timer->it_overrun += 1 << i;
166            delta = cputime_sub(delta, incr);
167        }
168    }
169}
170
171static inline cputime_t prof_ticks(struct task_struct *p)
172{
173    return cputime_add(p->utime, p->stime);
174}
175static inline cputime_t virt_ticks(struct task_struct *p)
176{
177    return p->utime;
178}
179
180int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
181{
182    int error = check_clock(which_clock);
183    if (!error) {
184        tp->tv_sec = 0;
185        tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
186        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
187            /*
188             * If sched_clock is using a cycle counter, we
189             * don't have any idea of its true resolution
190             * exported, but it is much more than 1s/HZ.
191             */
192            tp->tv_nsec = 1;
193        }
194    }
195    return error;
196}
197
198int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
199{
200    /*
201     * You can never reset a CPU clock, but we check for other errors
202     * in the call before failing with EPERM.
203     */
204    int error = check_clock(which_clock);
205    if (error == 0) {
206        error = -EPERM;
207    }
208    return error;
209}
210
211
212/*
213 * Sample a per-thread clock for the given task.
214 */
215static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
216                union cpu_time_count *cpu)
217{
218    switch (CPUCLOCK_WHICH(which_clock)) {
219    default:
220        return -EINVAL;
221    case CPUCLOCK_PROF:
222        cpu->cpu = prof_ticks(p);
223        break;
224    case CPUCLOCK_VIRT:
225        cpu->cpu = virt_ticks(p);
226        break;
227    case CPUCLOCK_SCHED:
228        cpu->sched = task_sched_runtime(p);
229        break;
230    }
231    return 0;
232}
233
234void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
235{
236    struct sighand_struct *sighand;
237    struct signal_struct *sig;
238    struct task_struct *t;
239
240    *times = INIT_CPUTIME;
241
242    rcu_read_lock();
243    sighand = rcu_dereference(tsk->sighand);
244    if (!sighand)
245        goto out;
246
247    sig = tsk->signal;
248
249    t = tsk;
250    do {
251        times->utime = cputime_add(times->utime, t->utime);
252        times->stime = cputime_add(times->stime, t->stime);
253        times->sum_exec_runtime += t->se.sum_exec_runtime;
254
255        t = next_thread(t);
256    } while (t != tsk);
257
258    times->utime = cputime_add(times->utime, sig->utime);
259    times->stime = cputime_add(times->stime, sig->stime);
260    times->sum_exec_runtime += sig->sum_sched_runtime;
261out:
262    rcu_read_unlock();
263}
264
265static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
266{
267    if (cputime_gt(b->utime, a->utime))
268        a->utime = b->utime;
269
270    if (cputime_gt(b->stime, a->stime))
271        a->stime = b->stime;
272
273    if (b->sum_exec_runtime > a->sum_exec_runtime)
274        a->sum_exec_runtime = b->sum_exec_runtime;
275}
276
277void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
278{
279    struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
280    struct task_cputime sum;
281    unsigned long flags;
282
283    spin_lock_irqsave(&cputimer->lock, flags);
284    if (!cputimer->running) {
285        cputimer->running = 1;
286        /*
287         * The POSIX timer interface allows for absolute time expiry
288         * values through the TIMER_ABSTIME flag, therefore we have
289         * to synchronize the timer to the clock every time we start
290         * it.
291         */
292        thread_group_cputime(tsk, &sum);
293        update_gt_cputime(&cputimer->cputime, &sum);
294    }
295    *times = cputimer->cputime;
296    spin_unlock_irqrestore(&cputimer->lock, flags);
297}
298
299/*
300 * Sample a process (thread group) clock for the given group_leader task.
301 * Must be called with tasklist_lock held for reading.
302 */
303static int cpu_clock_sample_group(const clockid_t which_clock,
304                  struct task_struct *p,
305                  union cpu_time_count *cpu)
306{
307    struct task_cputime cputime;
308
309    switch (CPUCLOCK_WHICH(which_clock)) {
310    default:
311        return -EINVAL;
312    case CPUCLOCK_PROF:
313        thread_group_cputime(p, &cputime);
314        cpu->cpu = cputime_add(cputime.utime, cputime.stime);
315        break;
316    case CPUCLOCK_VIRT:
317        thread_group_cputime(p, &cputime);
318        cpu->cpu = cputime.utime;
319        break;
320    case CPUCLOCK_SCHED:
321        cpu->sched = thread_group_sched_runtime(p);
322        break;
323    }
324    return 0;
325}
326
327
328int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
329{
330    const pid_t pid = CPUCLOCK_PID(which_clock);
331    int error = -EINVAL;
332    union cpu_time_count rtn;
333
334    if (pid == 0) {
335        /*
336         * Special case constant value for our own clocks.
337         * We don't have to do any lookup to find ourselves.
338         */
339        if (CPUCLOCK_PERTHREAD(which_clock)) {
340            /*
341             * Sampling just ourselves we can do with no locking.
342             */
343            error = cpu_clock_sample(which_clock,
344                         current, &rtn);
345        } else {
346            read_lock(&tasklist_lock);
347            error = cpu_clock_sample_group(which_clock,
348                               current, &rtn);
349            read_unlock(&tasklist_lock);
350        }
351    } else {
352        /*
353         * Find the given PID, and validate that the caller
354         * should be able to see it.
355         */
356        struct task_struct *p;
357        rcu_read_lock();
358        p = find_task_by_vpid(pid);
359        if (p) {
360            if (CPUCLOCK_PERTHREAD(which_clock)) {
361                if (same_thread_group(p, current)) {
362                    error = cpu_clock_sample(which_clock,
363                                 p, &rtn);
364                }
365            } else {
366                read_lock(&tasklist_lock);
367                if (thread_group_leader(p) && p->signal) {
368                    error =
369                        cpu_clock_sample_group(which_clock,
370                                       p, &rtn);
371                }
372                read_unlock(&tasklist_lock);
373            }
374        }
375        rcu_read_unlock();
376    }
377
378    if (error)
379        return error;
380    sample_to_timespec(which_clock, rtn, tp);
381    return 0;
382}
383
384
385/*
386 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
387 * This is called from sys_timer_create with the new timer already locked.
388 */
389int posix_cpu_timer_create(struct k_itimer *new_timer)
390{
391    int ret = 0;
392    const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393    struct task_struct *p;
394
395    if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396        return -EINVAL;
397
398    INIT_LIST_HEAD(&new_timer->it.cpu.entry);
399    new_timer->it.cpu.incr.sched = 0;
400    new_timer->it.cpu.expires.sched = 0;
401
402    read_lock(&tasklist_lock);
403    if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
404        if (pid == 0) {
405            p = current;
406        } else {
407            p = find_task_by_vpid(pid);
408            if (p && !same_thread_group(p, current))
409                p = NULL;
410        }
411    } else {
412        if (pid == 0) {
413            p = current->group_leader;
414        } else {
415            p = find_task_by_vpid(pid);
416            if (p && !thread_group_leader(p))
417                p = NULL;
418        }
419    }
420    new_timer->it.cpu.task = p;
421    if (p) {
422        get_task_struct(p);
423    } else {
424        ret = -EINVAL;
425    }
426    read_unlock(&tasklist_lock);
427
428    return ret;
429}
430
431/*
432 * Clean up a CPU-clock timer that is about to be destroyed.
433 * This is called from timer deletion with the timer already locked.
434 * If we return TIMER_RETRY, it's necessary to release the timer's lock
435 * and try again. (This happens when the timer is in the middle of firing.)
436 */
437int posix_cpu_timer_del(struct k_itimer *timer)
438{
439    struct task_struct *p = timer->it.cpu.task;
440    int ret = 0;
441
442    if (likely(p != NULL)) {
443        read_lock(&tasklist_lock);
444        if (unlikely(p->signal == NULL)) {
445            /*
446             * We raced with the reaping of the task.
447             * The deletion should have cleared us off the list.
448             */
449            BUG_ON(!list_empty(&timer->it.cpu.entry));
450        } else {
451            spin_lock(&p->sighand->siglock);
452            if (timer->it.cpu.firing)
453                ret = TIMER_RETRY;
454            else
455                list_del(&timer->it.cpu.entry);
456            spin_unlock(&p->sighand->siglock);
457        }
458        read_unlock(&tasklist_lock);
459
460        if (!ret)
461            put_task_struct(p);
462    }
463
464    return ret;
465}
466
467/*
468 * Clean out CPU timers still ticking when a thread exited. The task
469 * pointer is cleared, and the expiry time is replaced with the residual
470 * time for later timer_gettime calls to return.
471 * This must be called with the siglock held.
472 */
473static void cleanup_timers(struct list_head *head,
474               cputime_t utime, cputime_t stime,
475               unsigned long long sum_exec_runtime)
476{
477    struct cpu_timer_list *timer, *next;
478    cputime_t ptime = cputime_add(utime, stime);
479
480    list_for_each_entry_safe(timer, next, head, entry) {
481        list_del_init(&timer->entry);
482        if (cputime_lt(timer->expires.cpu, ptime)) {
483            timer->expires.cpu = cputime_zero;
484        } else {
485            timer->expires.cpu = cputime_sub(timer->expires.cpu,
486                             ptime);
487        }
488    }
489
490    ++head;
491    list_for_each_entry_safe(timer, next, head, entry) {
492        list_del_init(&timer->entry);
493        if (cputime_lt(timer->expires.cpu, utime)) {
494            timer->expires.cpu = cputime_zero;
495        } else {
496            timer->expires.cpu = cputime_sub(timer->expires.cpu,
497                             utime);
498        }
499    }
500
501    ++head;
502    list_for_each_entry_safe(timer, next, head, entry) {
503        list_del_init(&timer->entry);
504        if (timer->expires.sched < sum_exec_runtime) {
505            timer->expires.sched = 0;
506        } else {
507            timer->expires.sched -= sum_exec_runtime;
508        }
509    }
510}
511
512/*
513 * These are both called with the siglock held, when the current thread
514 * is being reaped. When the final (leader) thread in the group is reaped,
515 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
516 */
517void posix_cpu_timers_exit(struct task_struct *tsk)
518{
519    cleanup_timers(tsk->cpu_timers,
520               tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
521
522}
523void posix_cpu_timers_exit_group(struct task_struct *tsk)
524{
525    struct signal_struct *const sig = tsk->signal;
526
527    cleanup_timers(tsk->signal->cpu_timers,
528               cputime_add(tsk->utime, sig->utime),
529               cputime_add(tsk->stime, sig->stime),
530               tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
531}
532
533static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
534{
535    /*
536     * That's all for this thread or process.
537     * We leave our residual in expires to be reported.
538     */
539    put_task_struct(timer->it.cpu.task);
540    timer->it.cpu.task = NULL;
541    timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
542                         timer->it.cpu.expires,
543                         now);
544}
545
546static inline int expires_gt(cputime_t expires, cputime_t new_exp)
547{
548    return cputime_eq(expires, cputime_zero) ||
549           cputime_gt(expires, new_exp);
550}
551
552static inline int expires_le(cputime_t expires, cputime_t new_exp)
553{
554    return !cputime_eq(expires, cputime_zero) &&
555           cputime_le(expires, new_exp);
556}
557/*
558 * Insert the timer on the appropriate list before any timers that
559 * expire later. This must be called with the tasklist_lock held
560 * for reading, and interrupts disabled.
561 */
562static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
563{
564    struct task_struct *p = timer->it.cpu.task;
565    struct list_head *head, *listpos;
566    struct cpu_timer_list *const nt = &timer->it.cpu;
567    struct cpu_timer_list *next;
568    unsigned long i;
569
570    head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
571        p->cpu_timers : p->signal->cpu_timers);
572    head += CPUCLOCK_WHICH(timer->it_clock);
573
574    BUG_ON(!irqs_disabled());
575    spin_lock(&p->sighand->siglock);
576
577    listpos = head;
578    if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
579        list_for_each_entry(next, head, entry) {
580            if (next->expires.sched > nt->expires.sched)
581                break;
582            listpos = &next->entry;
583        }
584    } else {
585        list_for_each_entry(next, head, entry) {
586            if (cputime_gt(next->expires.cpu, nt->expires.cpu))
587                break;
588            listpos = &next->entry;
589        }
590    }
591    list_add(&nt->entry, listpos);
592
593    if (listpos == head) {
594        /*
595         * We are the new earliest-expiring timer.
596         * If we are a thread timer, there can always
597         * be a process timer telling us to stop earlier.
598         */
599
600        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
601            union cpu_time_count *exp = &nt->expires;
602
603            switch (CPUCLOCK_WHICH(timer->it_clock)) {
604            default:
605                BUG();
606            case CPUCLOCK_PROF:
607                if (expires_gt(p->cputime_expires.prof_exp,
608                           exp->cpu))
609                    p->cputime_expires.prof_exp = exp->cpu;
610                break;
611            case CPUCLOCK_VIRT:
612                if (expires_gt(p->cputime_expires.virt_exp,
613                           exp->cpu))
614                    p->cputime_expires.virt_exp = exp->cpu;
615                break;
616            case CPUCLOCK_SCHED:
617                if (p->cputime_expires.sched_exp == 0 ||
618                    p->cputime_expires.sched_exp > exp->sched)
619                    p->cputime_expires.sched_exp =
620                                exp->sched;
621                break;
622            }
623        } else {
624            struct signal_struct *const sig = p->signal;
625            union cpu_time_count *exp = &timer->it.cpu.expires;
626
627            /*
628             * For a process timer, set the cached expiration time.
629             */
630            switch (CPUCLOCK_WHICH(timer->it_clock)) {
631            default:
632                BUG();
633            case CPUCLOCK_VIRT:
634                if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
635                           exp->cpu))
636                    break;
637                sig->cputime_expires.virt_exp = exp->cpu;
638                break;
639            case CPUCLOCK_PROF:
640                if (expires_le(sig->it[CPUCLOCK_PROF].expires,
641                           exp->cpu))
642                    break;
643                i = sig->rlim[RLIMIT_CPU].rlim_cur;
644                if (i != RLIM_INFINITY &&
645                    i <= cputime_to_secs(exp->cpu))
646                    break;
647                sig->cputime_expires.prof_exp = exp->cpu;
648                break;
649            case CPUCLOCK_SCHED:
650                sig->cputime_expires.sched_exp = exp->sched;
651                break;
652            }
653        }
654    }
655
656    spin_unlock(&p->sighand->siglock);
657}
658
659/*
660 * The timer is locked, fire it and arrange for its reload.
661 */
662static void cpu_timer_fire(struct k_itimer *timer)
663{
664    if (unlikely(timer->sigq == NULL)) {
665        /*
666         * This a special case for clock_nanosleep,
667         * not a normal timer from sys_timer_create.
668         */
669        wake_up_process(timer->it_process);
670        timer->it.cpu.expires.sched = 0;
671    } else if (timer->it.cpu.incr.sched == 0) {
672        /*
673         * One-shot timer. Clear it as soon as it's fired.
674         */
675        posix_timer_event(timer, 0);
676        timer->it.cpu.expires.sched = 0;
677    } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
678        /*
679         * The signal did not get queued because the signal
680         * was ignored, so we won't get any callback to
681         * reload the timer. But we need to keep it
682         * ticking in case the signal is deliverable next time.
683         */
684        posix_cpu_timer_schedule(timer);
685    }
686}
687
688/*
689 * Sample a process (thread group) timer for the given group_leader task.
690 * Must be called with tasklist_lock held for reading.
691 */
692static int cpu_timer_sample_group(const clockid_t which_clock,
693                  struct task_struct *p,
694                  union cpu_time_count *cpu)
695{
696    struct task_cputime cputime;
697
698    thread_group_cputimer(p, &cputime);
699    switch (CPUCLOCK_WHICH(which_clock)) {
700    default:
701        return -EINVAL;
702    case CPUCLOCK_PROF:
703        cpu->cpu = cputime_add(cputime.utime, cputime.stime);
704        break;
705    case CPUCLOCK_VIRT:
706        cpu->cpu = cputime.utime;
707        break;
708    case CPUCLOCK_SCHED:
709        cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
710        break;
711    }
712    return 0;
713}
714
715/*
716 * Guts of sys_timer_settime for CPU timers.
717 * This is called with the timer locked and interrupts disabled.
718 * If we return TIMER_RETRY, it's necessary to release the timer's lock
719 * and try again. (This happens when the timer is in the middle of firing.)
720 */
721int posix_cpu_timer_set(struct k_itimer *timer, int flags,
722            struct itimerspec *new, struct itimerspec *old)
723{
724    struct task_struct *p = timer->it.cpu.task;
725    union cpu_time_count old_expires, new_expires, val;
726    int ret;
727
728    if (unlikely(p == NULL)) {
729        /*
730         * Timer refers to a dead task's clock.
731         */
732        return -ESRCH;
733    }
734
735    new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
736
737    read_lock(&tasklist_lock);
738    /*
739     * We need the tasklist_lock to protect against reaping that
740     * clears p->signal. If p has just been reaped, we can no
741     * longer get any information about it at all.
742     */
743    if (unlikely(p->signal == NULL)) {
744        read_unlock(&tasklist_lock);
745        put_task_struct(p);
746        timer->it.cpu.task = NULL;
747        return -ESRCH;
748    }
749
750    /*
751     * Disarm any old timer after extracting its expiry time.
752     */
753    BUG_ON(!irqs_disabled());
754
755    ret = 0;
756    spin_lock(&p->sighand->siglock);
757    old_expires = timer->it.cpu.expires;
758    if (unlikely(timer->it.cpu.firing)) {
759        timer->it.cpu.firing = -1;
760        ret = TIMER_RETRY;
761    } else
762        list_del_init(&timer->it.cpu.entry);
763    spin_unlock(&p->sighand->siglock);
764
765    /*
766     * We need to sample the current value to convert the new
767     * value from to relative and absolute, and to convert the
768     * old value from absolute to relative. To set a process
769     * timer, we need a sample to balance the thread expiry
770     * times (in arm_timer). With an absolute time, we must
771     * check if it's already passed. In short, we need a sample.
772     */
773    if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
774        cpu_clock_sample(timer->it_clock, p, &val);
775    } else {
776        cpu_timer_sample_group(timer->it_clock, p, &val);
777    }
778
779    if (old) {
780        if (old_expires.sched == 0) {
781            old->it_value.tv_sec = 0;
782            old->it_value.tv_nsec = 0;
783        } else {
784            /*
785             * Update the timer in case it has
786             * overrun already. If it has,
787             * we'll report it as having overrun
788             * and with the next reloaded timer
789             * already ticking, though we are
790             * swallowing that pending
791             * notification here to install the
792             * new setting.
793             */
794            bump_cpu_timer(timer, val);
795            if (cpu_time_before(timer->it_clock, val,
796                        timer->it.cpu.expires)) {
797                old_expires = cpu_time_sub(
798                    timer->it_clock,
799                    timer->it.cpu.expires, val);
800                sample_to_timespec(timer->it_clock,
801                           old_expires,
802                           &old->it_value);
803            } else {
804                old->it_value.tv_nsec = 1;
805                old->it_value.tv_sec = 0;
806            }
807        }
808    }
809
810    if (unlikely(ret)) {
811        /*
812         * We are colliding with the timer actually firing.
813         * Punt after filling in the timer's old value, and
814         * disable this firing since we are already reporting
815         * it as an overrun (thanks to bump_cpu_timer above).
816         */
817        read_unlock(&tasklist_lock);
818        goto out;
819    }
820
821    if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
822        cpu_time_add(timer->it_clock, &new_expires, val);
823    }
824
825    /*
826     * Install the new expiry time (or zero).
827     * For a timer with no notification action, we don't actually
828     * arm the timer (we'll just fake it for timer_gettime).
829     */
830    timer->it.cpu.expires = new_expires;
831    if (new_expires.sched != 0 &&
832        (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
833        cpu_time_before(timer->it_clock, val, new_expires)) {
834        arm_timer(timer, val);
835    }
836
837    read_unlock(&tasklist_lock);
838
839    /*
840     * Install the new reload setting, and
841     * set up the signal and overrun bookkeeping.
842     */
843    timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
844                        &new->it_interval);
845
846    /*
847     * This acts as a modification timestamp for the timer,
848     * so any automatic reload attempt will punt on seeing
849     * that we have reset the timer manually.
850     */
851    timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
852        ~REQUEUE_PENDING;
853    timer->it_overrun_last = 0;
854    timer->it_overrun = -1;
855
856    if (new_expires.sched != 0 &&
857        (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
858        !cpu_time_before(timer->it_clock, val, new_expires)) {
859        /*
860         * The designated time already passed, so we notify
861         * immediately, even if the thread never runs to
862         * accumulate more time on this clock.
863         */
864        cpu_timer_fire(timer);
865    }
866
867    ret = 0;
868 out:
869    if (old) {
870        sample_to_timespec(timer->it_clock,
871                   timer->it.cpu.incr, &old->it_interval);
872    }
873    return ret;
874}
875
876void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
877{
878    union cpu_time_count now;
879    struct task_struct *p = timer->it.cpu.task;
880    int clear_dead;
881
882    /*
883     * Easy part: convert the reload time.
884     */
885    sample_to_timespec(timer->it_clock,
886               timer->it.cpu.incr, &itp->it_interval);
887
888    if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
889        itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
890        return;
891    }
892
893    if (unlikely(p == NULL)) {
894        /*
895         * This task already died and the timer will never fire.
896         * In this case, expires is actually the dead value.
897         */
898    dead:
899        sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
900                   &itp->it_value);
901        return;
902    }
903
904    /*
905     * Sample the clock to take the difference with the expiry time.
906     */
907    if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
908        cpu_clock_sample(timer->it_clock, p, &now);
909        clear_dead = p->exit_state;
910    } else {
911        read_lock(&tasklist_lock);
912        if (unlikely(p->signal == NULL)) {
913            /*
914             * The process has been reaped.
915             * We can't even collect a sample any more.
916             * Call the timer disarmed, nothing else to do.
917             */
918            put_task_struct(p);
919            timer->it.cpu.task = NULL;
920            timer->it.cpu.expires.sched = 0;
921            read_unlock(&tasklist_lock);
922            goto dead;
923        } else {
924            cpu_timer_sample_group(timer->it_clock, p, &now);
925            clear_dead = (unlikely(p->exit_state) &&
926                      thread_group_empty(p));
927        }
928        read_unlock(&tasklist_lock);
929    }
930
931    if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
932        if (timer->it.cpu.incr.sched == 0 &&
933            cpu_time_before(timer->it_clock,
934                    timer->it.cpu.expires, now)) {
935            /*
936             * Do-nothing timer expired and has no reload,
937             * so it's as if it was never set.
938             */
939            timer->it.cpu.expires.sched = 0;
940            itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
941            return;
942        }
943        /*
944         * Account for any expirations and reloads that should
945         * have happened.
946         */
947        bump_cpu_timer(timer, now);
948    }
949
950    if (unlikely(clear_dead)) {
951        /*
952         * We've noticed that the thread is dead, but
953         * not yet reaped. Take this opportunity to
954         * drop our task ref.
955         */
956        clear_dead_task(timer, now);
957        goto dead;
958    }
959
960    if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
961        sample_to_timespec(timer->it_clock,
962                   cpu_time_sub(timer->it_clock,
963                        timer->it.cpu.expires, now),
964                   &itp->it_value);
965    } else {
966        /*
967         * The timer should have expired already, but the firing
968         * hasn't taken place yet. Say it's just about to expire.
969         */
970        itp->it_value.tv_nsec = 1;
971        itp->it_value.tv_sec = 0;
972    }
973}
974
975/*
976 * Check for any per-thread CPU timers that have fired and move them off
977 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
978 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
979 */
980static void check_thread_timers(struct task_struct *tsk,
981                struct list_head *firing)
982{
983    int maxfire;
984    struct list_head *timers = tsk->cpu_timers;
985    struct signal_struct *const sig = tsk->signal;
986
987    maxfire = 20;
988    tsk->cputime_expires.prof_exp = cputime_zero;
989    while (!list_empty(timers)) {
990        struct cpu_timer_list *t = list_first_entry(timers,
991                              struct cpu_timer_list,
992                              entry);
993        if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
994            tsk->cputime_expires.prof_exp = t->expires.cpu;
995            break;
996        }
997        t->firing = 1;
998        list_move_tail(&t->entry, firing);
999    }
1000
1001    ++timers;
1002    maxfire = 20;
1003    tsk->cputime_expires.virt_exp = cputime_zero;
1004    while (!list_empty(timers)) {
1005        struct cpu_timer_list *t = list_first_entry(timers,
1006                              struct cpu_timer_list,
1007                              entry);
1008        if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1009            tsk->cputime_expires.virt_exp = t->expires.cpu;
1010            break;
1011        }
1012        t->firing = 1;
1013        list_move_tail(&t->entry, firing);
1014    }
1015
1016    ++timers;
1017    maxfire = 20;
1018    tsk->cputime_expires.sched_exp = 0;
1019    while (!list_empty(timers)) {
1020        struct cpu_timer_list *t = list_first_entry(timers,
1021                              struct cpu_timer_list,
1022                              entry);
1023        if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1024            tsk->cputime_expires.sched_exp = t->expires.sched;
1025            break;
1026        }
1027        t->firing = 1;
1028        list_move_tail(&t->entry, firing);
1029    }
1030
1031    /*
1032     * Check for the special case thread timers.
1033     */
1034    if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1035        unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1036        unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1037
1038        if (hard != RLIM_INFINITY &&
1039            tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1040            /*
1041             * At the hard limit, we just die.
1042             * No need to calculate anything else now.
1043             */
1044            __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1045            return;
1046        }
1047        if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1048            /*
1049             * At the soft limit, send a SIGXCPU every second.
1050             */
1051            if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1052                < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1053                sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1054                                USEC_PER_SEC;
1055            }
1056            printk(KERN_INFO
1057                "RT Watchdog Timeout: %s[%d]\n",
1058                tsk->comm, task_pid_nr(tsk));
1059            __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1060        }
1061    }
1062}
1063
1064static void stop_process_timers(struct task_struct *tsk)
1065{
1066    struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1067    unsigned long flags;
1068
1069    if (!cputimer->running)
1070        return;
1071
1072    spin_lock_irqsave(&cputimer->lock, flags);
1073    cputimer->running = 0;
1074    spin_unlock_irqrestore(&cputimer->lock, flags);
1075}
1076
1077static u32 onecputick;
1078
1079static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1080                 cputime_t *expires, cputime_t cur_time, int signo)
1081{
1082    if (cputime_eq(it->expires, cputime_zero))
1083        return;
1084
1085    if (cputime_ge(cur_time, it->expires)) {
1086        if (!cputime_eq(it->incr, cputime_zero)) {
1087            it->expires = cputime_add(it->expires, it->incr);
1088            it->error += it->incr_error;
1089            if (it->error >= onecputick) {
1090                it->expires = cputime_sub(it->expires,
1091                              cputime_one_jiffy);
1092                it->error -= onecputick;
1093            }
1094        } else {
1095            it->expires = cputime_zero;
1096        }
1097
1098        trace_itimer_expire(signo == SIGPROF ?
1099                    ITIMER_PROF : ITIMER_VIRTUAL,
1100                    tsk->signal->leader_pid, cur_time);
1101        __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1102    }
1103
1104    if (!cputime_eq(it->expires, cputime_zero) &&
1105        (cputime_eq(*expires, cputime_zero) ||
1106         cputime_lt(it->expires, *expires))) {
1107        *expires = it->expires;
1108    }
1109}
1110
1111/*
1112 * Check for any per-thread CPU timers that have fired and move them
1113 * off the tsk->*_timers list onto the firing list. Per-thread timers
1114 * have already been taken off.
1115 */
1116static void check_process_timers(struct task_struct *tsk,
1117                 struct list_head *firing)
1118{
1119    int maxfire;
1120    struct signal_struct *const sig = tsk->signal;
1121    cputime_t utime, ptime, virt_expires, prof_expires;
1122    unsigned long long sum_sched_runtime, sched_expires;
1123    struct list_head *timers = sig->cpu_timers;
1124    struct task_cputime cputime;
1125
1126    /*
1127     * Don't sample the current process CPU clocks if there are no timers.
1128     */
1129    if (list_empty(&timers[CPUCLOCK_PROF]) &&
1130        cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1131        sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1132        list_empty(&timers[CPUCLOCK_VIRT]) &&
1133        cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1134        list_empty(&timers[CPUCLOCK_SCHED])) {
1135        stop_process_timers(tsk);
1136        return;
1137    }
1138
1139    /*
1140     * Collect the current process totals.
1141     */
1142    thread_group_cputimer(tsk, &cputime);
1143    utime = cputime.utime;
1144    ptime = cputime_add(utime, cputime.stime);
1145    sum_sched_runtime = cputime.sum_exec_runtime;
1146    maxfire = 20;
1147    prof_expires = cputime_zero;
1148    while (!list_empty(timers)) {
1149        struct cpu_timer_list *tl = list_first_entry(timers,
1150                              struct cpu_timer_list,
1151                              entry);
1152        if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1153            prof_expires = tl->expires.cpu;
1154            break;
1155        }
1156        tl->firing = 1;
1157        list_move_tail(&tl->entry, firing);
1158    }
1159
1160    ++timers;
1161    maxfire = 20;
1162    virt_expires = cputime_zero;
1163    while (!list_empty(timers)) {
1164        struct cpu_timer_list *tl = list_first_entry(timers,
1165                              struct cpu_timer_list,
1166                              entry);
1167        if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1168            virt_expires = tl->expires.cpu;
1169            break;
1170        }
1171        tl->firing = 1;
1172        list_move_tail(&tl->entry, firing);
1173    }
1174
1175    ++timers;
1176    maxfire = 20;
1177    sched_expires = 0;
1178    while (!list_empty(timers)) {
1179        struct cpu_timer_list *tl = list_first_entry(timers,
1180                              struct cpu_timer_list,
1181                              entry);
1182        if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1183            sched_expires = tl->expires.sched;
1184            break;
1185        }
1186        tl->firing = 1;
1187        list_move_tail(&tl->entry, firing);
1188    }
1189
1190    /*
1191     * Check for the special case process timers.
1192     */
1193    check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1194             SIGPROF);
1195    check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1196             SIGVTALRM);
1197
1198    if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1199        unsigned long psecs = cputime_to_secs(ptime);
1200        cputime_t x;
1201        if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1202            /*
1203             * At the hard limit, we just die.
1204             * No need to calculate anything else now.
1205             */
1206            __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1207            return;
1208        }
1209        if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1210            /*
1211             * At the soft limit, send a SIGXCPU every second.
1212             */
1213            __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1214            if (sig->rlim[RLIMIT_CPU].rlim_cur
1215                < sig->rlim[RLIMIT_CPU].rlim_max) {
1216                sig->rlim[RLIMIT_CPU].rlim_cur++;
1217            }
1218        }
1219        x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1220        if (cputime_eq(prof_expires, cputime_zero) ||
1221            cputime_lt(x, prof_expires)) {
1222            prof_expires = x;
1223        }
1224    }
1225
1226    if (!cputime_eq(prof_expires, cputime_zero) &&
1227        (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1228         cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1229        sig->cputime_expires.prof_exp = prof_expires;
1230    if (!cputime_eq(virt_expires, cputime_zero) &&
1231        (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1232         cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1233        sig->cputime_expires.virt_exp = virt_expires;
1234    if (sched_expires != 0 &&
1235        (sig->cputime_expires.sched_exp == 0 ||
1236         sig->cputime_expires.sched_exp > sched_expires))
1237        sig->cputime_expires.sched_exp = sched_expires;
1238}
1239
1240/*
1241 * This is called from the signal code (via do_schedule_next_timer)
1242 * when the last timer signal was delivered and we have to reload the timer.
1243 */
1244void posix_cpu_timer_schedule(struct k_itimer *timer)
1245{
1246    struct task_struct *p = timer->it.cpu.task;
1247    union cpu_time_count now;
1248
1249    if (unlikely(p == NULL))
1250        /*
1251         * The task was cleaned up already, no future firings.
1252         */
1253        goto out;
1254
1255    /*
1256     * Fetch the current sample and update the timer's expiry time.
1257     */
1258    if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1259        cpu_clock_sample(timer->it_clock, p, &now);
1260        bump_cpu_timer(timer, now);
1261        if (unlikely(p->exit_state)) {
1262            clear_dead_task(timer, now);
1263            goto out;
1264        }
1265        read_lock(&tasklist_lock); /* arm_timer needs it. */
1266    } else {
1267        read_lock(&tasklist_lock);
1268        if (unlikely(p->signal == NULL)) {
1269            /*
1270             * The process has been reaped.
1271             * We can't even collect a sample any more.
1272             */
1273            put_task_struct(p);
1274            timer->it.cpu.task = p = NULL;
1275            timer->it.cpu.expires.sched = 0;
1276            goto out_unlock;
1277        } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1278            /*
1279             * We've noticed that the thread is dead, but
1280             * not yet reaped. Take this opportunity to
1281             * drop our task ref.
1282             */
1283            clear_dead_task(timer, now);
1284            goto out_unlock;
1285        }
1286        cpu_timer_sample_group(timer->it_clock, p, &now);
1287        bump_cpu_timer(timer, now);
1288        /* Leave the tasklist_lock locked for the call below. */
1289    }
1290
1291    /*
1292     * Now re-arm for the new expiry time.
1293     */
1294    arm_timer(timer, now);
1295
1296out_unlock:
1297    read_unlock(&tasklist_lock);
1298
1299out:
1300    timer->it_overrun_last = timer->it_overrun;
1301    timer->it_overrun = -1;
1302    ++timer->it_requeue_pending;
1303}
1304
1305/**
1306 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1307 *
1308 * @cputime: The struct to compare.
1309 *
1310 * Checks @cputime to see if all fields are zero. Returns true if all fields
1311 * are zero, false if any field is nonzero.
1312 */
1313static inline int task_cputime_zero(const struct task_cputime *cputime)
1314{
1315    if (cputime_eq(cputime->utime, cputime_zero) &&
1316        cputime_eq(cputime->stime, cputime_zero) &&
1317        cputime->sum_exec_runtime == 0)
1318        return 1;
1319    return 0;
1320}
1321
1322/**
1323 * task_cputime_expired - Compare two task_cputime entities.
1324 *
1325 * @sample: The task_cputime structure to be checked for expiration.
1326 * @expires: Expiration times, against which @sample will be checked.
1327 *
1328 * Checks @sample against @expires to see if any field of @sample has expired.
1329 * Returns true if any field of the former is greater than the corresponding
1330 * field of the latter if the latter field is set. Otherwise returns false.
1331 */
1332static inline int task_cputime_expired(const struct task_cputime *sample,
1333                    const struct task_cputime *expires)
1334{
1335    if (!cputime_eq(expires->utime, cputime_zero) &&
1336        cputime_ge(sample->utime, expires->utime))
1337        return 1;
1338    if (!cputime_eq(expires->stime, cputime_zero) &&
1339        cputime_ge(cputime_add(sample->utime, sample->stime),
1340               expires->stime))
1341        return 1;
1342    if (expires->sum_exec_runtime != 0 &&
1343        sample->sum_exec_runtime >= expires->sum_exec_runtime)
1344        return 1;
1345    return 0;
1346}
1347
1348/**
1349 * fastpath_timer_check - POSIX CPU timers fast path.
1350 *
1351 * @tsk: The task (thread) being checked.
1352 *
1353 * Check the task and thread group timers. If both are zero (there are no
1354 * timers set) return false. Otherwise snapshot the task and thread group
1355 * timers and compare them with the corresponding expiration times. Return
1356 * true if a timer has expired, else return false.
1357 */
1358static inline int fastpath_timer_check(struct task_struct *tsk)
1359{
1360    struct signal_struct *sig;
1361
1362    /* tsk == current, ensure it is safe to use ->signal/sighand */
1363    if (unlikely(tsk->exit_state))
1364        return 0;
1365
1366    if (!task_cputime_zero(&tsk->cputime_expires)) {
1367        struct task_cputime task_sample = {
1368            .utime = tsk->utime,
1369            .stime = tsk->stime,
1370            .sum_exec_runtime = tsk->se.sum_exec_runtime
1371        };
1372
1373        if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1374            return 1;
1375    }
1376
1377    sig = tsk->signal;
1378    if (!task_cputime_zero(&sig->cputime_expires)) {
1379        struct task_cputime group_sample;
1380
1381        thread_group_cputimer(tsk, &group_sample);
1382        if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1383            return 1;
1384    }
1385
1386    return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1387}
1388
1389/*
1390 * This is called from the timer interrupt handler. The irq handler has
1391 * already updated our counts. We need to check if any timers fire now.
1392 * Interrupts are disabled.
1393 */
1394void run_posix_cpu_timers(struct task_struct *tsk)
1395{
1396    LIST_HEAD(firing);
1397    struct k_itimer *timer, *next;
1398
1399    BUG_ON(!irqs_disabled());
1400
1401    /*
1402     * The fast path checks that there are no expired thread or thread
1403     * group timers. If that's so, just return.
1404     */
1405    if (!fastpath_timer_check(tsk))
1406        return;
1407
1408    spin_lock(&tsk->sighand->siglock);
1409    /*
1410     * Here we take off tsk->signal->cpu_timers[N] and
1411     * tsk->cpu_timers[N] all the timers that are firing, and
1412     * put them on the firing list.
1413     */
1414    check_thread_timers(tsk, &firing);
1415    check_process_timers(tsk, &firing);
1416
1417    /*
1418     * We must release these locks before taking any timer's lock.
1419     * There is a potential race with timer deletion here, as the
1420     * siglock now protects our private firing list. We have set
1421     * the firing flag in each timer, so that a deletion attempt
1422     * that gets the timer lock before we do will give it up and
1423     * spin until we've taken care of that timer below.
1424     */
1425    spin_unlock(&tsk->sighand->siglock);
1426
1427    /*
1428     * Now that all the timers on our list have the firing flag,
1429     * noone will touch their list entries but us. We'll take
1430     * each timer's lock before clearing its firing flag, so no
1431     * timer call will interfere.
1432     */
1433    list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1434        int cpu_firing;
1435
1436        spin_lock(&timer->it_lock);
1437        list_del_init(&timer->it.cpu.entry);
1438        cpu_firing = timer->it.cpu.firing;
1439        timer->it.cpu.firing = 0;
1440        /*
1441         * The firing flag is -1 if we collided with a reset
1442         * of the timer, which already reported this
1443         * almost-firing as an overrun. So don't generate an event.
1444         */
1445        if (likely(cpu_firing >= 0))
1446            cpu_timer_fire(timer);
1447        spin_unlock(&timer->it_lock);
1448    }
1449}
1450
1451/*
1452 * Set one of the process-wide special case CPU timers.
1453 * The tsk->sighand->siglock must be held by the caller.
1454 * The *newval argument is relative and we update it to be absolute, *oldval
1455 * is absolute and we update it to be relative.
1456 */
1457void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1458               cputime_t *newval, cputime_t *oldval)
1459{
1460    union cpu_time_count now;
1461    struct list_head *head;
1462
1463    BUG_ON(clock_idx == CPUCLOCK_SCHED);
1464    cpu_timer_sample_group(clock_idx, tsk, &now);
1465
1466    if (oldval) {
1467        if (!cputime_eq(*oldval, cputime_zero)) {
1468            if (cputime_le(*oldval, now.cpu)) {
1469                /* Just about to fire. */
1470                *oldval = cputime_one_jiffy;
1471            } else {
1472                *oldval = cputime_sub(*oldval, now.cpu);
1473            }
1474        }
1475
1476        if (cputime_eq(*newval, cputime_zero))
1477            return;
1478        *newval = cputime_add(*newval, now.cpu);
1479
1480        /*
1481         * If the RLIMIT_CPU timer will expire before the
1482         * ITIMER_PROF timer, we have nothing else to do.
1483         */
1484        if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1485            < cputime_to_secs(*newval))
1486            return;
1487    }
1488
1489    /*
1490     * Check whether there are any process timers already set to fire
1491     * before this one. If so, we don't have anything more to do.
1492     */
1493    head = &tsk->signal->cpu_timers[clock_idx];
1494    if (list_empty(head) ||
1495        cputime_ge(list_first_entry(head,
1496                  struct cpu_timer_list, entry)->expires.cpu,
1497               *newval)) {
1498        switch (clock_idx) {
1499        case CPUCLOCK_PROF:
1500            tsk->signal->cputime_expires.prof_exp = *newval;
1501            break;
1502        case CPUCLOCK_VIRT:
1503            tsk->signal->cputime_expires.virt_exp = *newval;
1504            break;
1505        }
1506    }
1507}
1508
1509static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1510                struct timespec *rqtp, struct itimerspec *it)
1511{
1512    struct k_itimer timer;
1513    int error;
1514
1515    /*
1516     * Set up a temporary timer and then wait for it to go off.
1517     */
1518    memset(&timer, 0, sizeof timer);
1519    spin_lock_init(&timer.it_lock);
1520    timer.it_clock = which_clock;
1521    timer.it_overrun = -1;
1522    error = posix_cpu_timer_create(&timer);
1523    timer.it_process = current;
1524    if (!error) {
1525        static struct itimerspec zero_it;
1526
1527        memset(it, 0, sizeof *it);
1528        it->it_value = *rqtp;
1529
1530        spin_lock_irq(&timer.it_lock);
1531        error = posix_cpu_timer_set(&timer, flags, it, NULL);
1532        if (error) {
1533            spin_unlock_irq(&timer.it_lock);
1534            return error;
1535        }
1536
1537        while (!signal_pending(current)) {
1538            if (timer.it.cpu.expires.sched == 0) {
1539                /*
1540                 * Our timer fired and was reset.
1541                 */
1542                spin_unlock_irq(&timer.it_lock);
1543                return 0;
1544            }
1545
1546            /*
1547             * Block until cpu_timer_fire (or a signal) wakes us.
1548             */
1549            __set_current_state(TASK_INTERRUPTIBLE);
1550            spin_unlock_irq(&timer.it_lock);
1551            schedule();
1552            spin_lock_irq(&timer.it_lock);
1553        }
1554
1555        /*
1556         * We were interrupted by a signal.
1557         */
1558        sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1559        posix_cpu_timer_set(&timer, 0, &zero_it, it);
1560        spin_unlock_irq(&timer.it_lock);
1561
1562        if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1563            /*
1564             * It actually did fire already.
1565             */
1566            return 0;
1567        }
1568
1569        error = -ERESTART_RESTARTBLOCK;
1570    }
1571
1572    return error;
1573}
1574
1575int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1576             struct timespec *rqtp, struct timespec __user *rmtp)
1577{
1578    struct restart_block *restart_block =
1579        &current_thread_info()->restart_block;
1580    struct itimerspec it;
1581    int error;
1582
1583    /*
1584     * Diagnose required errors first.
1585     */
1586    if (CPUCLOCK_PERTHREAD(which_clock) &&
1587        (CPUCLOCK_PID(which_clock) == 0 ||
1588         CPUCLOCK_PID(which_clock) == current->pid))
1589        return -EINVAL;
1590
1591    error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1592
1593    if (error == -ERESTART_RESTARTBLOCK) {
1594
1595               if (flags & TIMER_ABSTIME)
1596            return -ERESTARTNOHAND;
1597        /*
1598          * Report back to the user the time still remaining.
1599          */
1600        if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1601            return -EFAULT;
1602
1603        restart_block->fn = posix_cpu_nsleep_restart;
1604        restart_block->arg0 = which_clock;
1605        restart_block->arg1 = (unsigned long) rmtp;
1606        restart_block->arg2 = rqtp->tv_sec;
1607        restart_block->arg3 = rqtp->tv_nsec;
1608    }
1609    return error;
1610}
1611
1612long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1613{
1614    clockid_t which_clock = restart_block->arg0;
1615    struct timespec __user *rmtp;
1616    struct timespec t;
1617    struct itimerspec it;
1618    int error;
1619
1620    rmtp = (struct timespec __user *) restart_block->arg1;
1621    t.tv_sec = restart_block->arg2;
1622    t.tv_nsec = restart_block->arg3;
1623
1624    restart_block->fn = do_no_restart_syscall;
1625    error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1626
1627    if (error == -ERESTART_RESTARTBLOCK) {
1628        /*
1629          * Report back to the user the time still remaining.
1630          */
1631        if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1632            return -EFAULT;
1633
1634        restart_block->fn = posix_cpu_nsleep_restart;
1635        restart_block->arg0 = which_clock;
1636        restart_block->arg1 = (unsigned long) rmtp;
1637        restart_block->arg2 = t.tv_sec;
1638        restart_block->arg3 = t.tv_nsec;
1639    }
1640    return error;
1641
1642}
1643
1644
1645#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1646#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1647
1648static int process_cpu_clock_getres(const clockid_t which_clock,
1649                    struct timespec *tp)
1650{
1651    return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1652}
1653static int process_cpu_clock_get(const clockid_t which_clock,
1654                 struct timespec *tp)
1655{
1656    return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1657}
1658static int process_cpu_timer_create(struct k_itimer *timer)
1659{
1660    timer->it_clock = PROCESS_CLOCK;
1661    return posix_cpu_timer_create(timer);
1662}
1663static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1664                  struct timespec *rqtp,
1665                  struct timespec __user *rmtp)
1666{
1667    return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1668}
1669static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1670{
1671    return -EINVAL;
1672}
1673static int thread_cpu_clock_getres(const clockid_t which_clock,
1674                   struct timespec *tp)
1675{
1676    return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1677}
1678static int thread_cpu_clock_get(const clockid_t which_clock,
1679                struct timespec *tp)
1680{
1681    return posix_cpu_clock_get(THREAD_CLOCK, tp);
1682}
1683static int thread_cpu_timer_create(struct k_itimer *timer)
1684{
1685    timer->it_clock = THREAD_CLOCK;
1686    return posix_cpu_timer_create(timer);
1687}
1688static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1689                  struct timespec *rqtp, struct timespec __user *rmtp)
1690{
1691    return -EINVAL;
1692}
1693static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1694{
1695    return -EINVAL;
1696}
1697
1698static __init int init_posix_cpu_timers(void)
1699{
1700    struct k_clock process = {
1701        .clock_getres = process_cpu_clock_getres,
1702        .clock_get = process_cpu_clock_get,
1703        .clock_set = do_posix_clock_nosettime,
1704        .timer_create = process_cpu_timer_create,
1705        .nsleep = process_cpu_nsleep,
1706        .nsleep_restart = process_cpu_nsleep_restart,
1707    };
1708    struct k_clock thread = {
1709        .clock_getres = thread_cpu_clock_getres,
1710        .clock_get = thread_cpu_clock_get,
1711        .clock_set = do_posix_clock_nosettime,
1712        .timer_create = thread_cpu_timer_create,
1713        .nsleep = thread_cpu_nsleep,
1714        .nsleep_restart = thread_cpu_nsleep_restart,
1715    };
1716    struct timespec ts;
1717
1718    register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1719    register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1720
1721    cputime_to_timespec(cputime_one_jiffy, &ts);
1722    onecputick = ts.tv_nsec;
1723    WARN_ON(ts.tv_sec != 0);
1724
1725    return 0;
1726}
1727__initcall(init_posix_cpu_timers);
1728

Archive Download this file



interactive