Root/
| 1 | /* |
| 2 | * Read-Copy Update mechanism for mutual exclusion |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright IBM Corporation, 2008 |
| 19 | * |
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * Manfred Spraul <manfred@colorfullife.com> |
| 22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version |
| 23 | * |
| 24 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 26 | * |
| 27 | * For detailed explanation of Read-Copy Update mechanism see - |
| 28 | * Documentation/RCU |
| 29 | */ |
| 30 | #include <linux/types.h> |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/spinlock.h> |
| 34 | #include <linux/smp.h> |
| 35 | #include <linux/rcupdate.h> |
| 36 | #include <linux/interrupt.h> |
| 37 | #include <linux/sched.h> |
| 38 | #include <linux/nmi.h> |
| 39 | #include <asm/atomic.h> |
| 40 | #include <linux/bitops.h> |
| 41 | #include <linux/module.h> |
| 42 | #include <linux/completion.h> |
| 43 | #include <linux/moduleparam.h> |
| 44 | #include <linux/percpu.h> |
| 45 | #include <linux/notifier.h> |
| 46 | #include <linux/cpu.h> |
| 47 | #include <linux/mutex.h> |
| 48 | #include <linux/time.h> |
| 49 | |
| 50 | #include "rcutree.h" |
| 51 | |
| 52 | /* Data structures. */ |
| 53 | |
| 54 | #define RCU_STATE_INITIALIZER(name) { \ |
| 55 | .level = { &name.node[0] }, \ |
| 56 | .levelcnt = { \ |
| 57 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ |
| 58 | NUM_RCU_LVL_1, \ |
| 59 | NUM_RCU_LVL_2, \ |
| 60 | NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ |
| 61 | }, \ |
| 62 | .signaled = RCU_GP_IDLE, \ |
| 63 | .gpnum = -300, \ |
| 64 | .completed = -300, \ |
| 65 | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ |
| 66 | .orphan_cbs_list = NULL, \ |
| 67 | .orphan_cbs_tail = &name.orphan_cbs_list, \ |
| 68 | .orphan_qlen = 0, \ |
| 69 | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ |
| 70 | .n_force_qs = 0, \ |
| 71 | .n_force_qs_ngp = 0, \ |
| 72 | } |
| 73 | |
| 74 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); |
| 75 | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); |
| 76 | |
| 77 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
| 78 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); |
| 79 | |
| 80 | |
| 81 | /* |
| 82 | * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s |
| 83 | * permit this function to be invoked without holding the root rcu_node |
| 84 | * structure's ->lock, but of course results can be subject to change. |
| 85 | */ |
| 86 | static int rcu_gp_in_progress(struct rcu_state *rsp) |
| 87 | { |
| 88 | return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Note a quiescent state. Because we do not need to know |
| 93 | * how many quiescent states passed, just if there was at least |
| 94 | * one since the start of the grace period, this just sets a flag. |
| 95 | */ |
| 96 | void rcu_sched_qs(int cpu) |
| 97 | { |
| 98 | struct rcu_data *rdp; |
| 99 | |
| 100 | rdp = &per_cpu(rcu_sched_data, cpu); |
| 101 | rdp->passed_quiesc_completed = rdp->completed; |
| 102 | barrier(); |
| 103 | rdp->passed_quiesc = 1; |
| 104 | rcu_preempt_note_context_switch(cpu); |
| 105 | } |
| 106 | |
| 107 | void rcu_bh_qs(int cpu) |
| 108 | { |
| 109 | struct rcu_data *rdp; |
| 110 | |
| 111 | rdp = &per_cpu(rcu_bh_data, cpu); |
| 112 | rdp->passed_quiesc_completed = rdp->completed; |
| 113 | barrier(); |
| 114 | rdp->passed_quiesc = 1; |
| 115 | } |
| 116 | |
| 117 | #ifdef CONFIG_NO_HZ |
| 118 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { |
| 119 | .dynticks_nesting = 1, |
| 120 | .dynticks = 1, |
| 121 | }; |
| 122 | #endif /* #ifdef CONFIG_NO_HZ */ |
| 123 | |
| 124 | static int blimit = 10; /* Maximum callbacks per softirq. */ |
| 125 | static int qhimark = 10000; /* If this many pending, ignore blimit. */ |
| 126 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ |
| 127 | |
| 128 | module_param(blimit, int, 0); |
| 129 | module_param(qhimark, int, 0); |
| 130 | module_param(qlowmark, int, 0); |
| 131 | |
| 132 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); |
| 133 | static int rcu_pending(int cpu); |
| 134 | |
| 135 | /* |
| 136 | * Return the number of RCU-sched batches processed thus far for debug & stats. |
| 137 | */ |
| 138 | long rcu_batches_completed_sched(void) |
| 139 | { |
| 140 | return rcu_sched_state.completed; |
| 141 | } |
| 142 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); |
| 143 | |
| 144 | /* |
| 145 | * Return the number of RCU BH batches processed thus far for debug & stats. |
| 146 | */ |
| 147 | long rcu_batches_completed_bh(void) |
| 148 | { |
| 149 | return rcu_bh_state.completed; |
| 150 | } |
| 151 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); |
| 152 | |
| 153 | /* |
| 154 | * Does the CPU have callbacks ready to be invoked? |
| 155 | */ |
| 156 | static int |
| 157 | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) |
| 158 | { |
| 159 | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * Does the current CPU require a yet-as-unscheduled grace period? |
| 164 | */ |
| 165 | static int |
| 166 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) |
| 167 | { |
| 168 | return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Return the root node of the specified rcu_state structure. |
| 173 | */ |
| 174 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) |
| 175 | { |
| 176 | return &rsp->node[0]; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Record the specified "completed" value, which is later used to validate |
| 181 | * dynticks counter manipulations and CPU-offline checks. Specify |
| 182 | * "rsp->completed - 1" to unconditionally invalidate any future dynticks |
| 183 | * manipulations and CPU-offline checks. Such invalidation is useful at |
| 184 | * the beginning of a grace period. |
| 185 | */ |
| 186 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) |
| 187 | { |
| 188 | rsp->dynticks_completed = comp; |
| 189 | } |
| 190 | |
| 191 | #ifdef CONFIG_SMP |
| 192 | |
| 193 | /* |
| 194 | * Recall the previously recorded value of the completion for dynticks. |
| 195 | */ |
| 196 | static long dyntick_recall_completed(struct rcu_state *rsp) |
| 197 | { |
| 198 | return rsp->dynticks_completed; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * If the specified CPU is offline, tell the caller that it is in |
| 203 | * a quiescent state. Otherwise, whack it with a reschedule IPI. |
| 204 | * Grace periods can end up waiting on an offline CPU when that |
| 205 | * CPU is in the process of coming online -- it will be added to the |
| 206 | * rcu_node bitmasks before it actually makes it online. The same thing |
| 207 | * can happen while a CPU is in the process of coming online. Because this |
| 208 | * race is quite rare, we check for it after detecting that the grace |
| 209 | * period has been delayed rather than checking each and every CPU |
| 210 | * each and every time we start a new grace period. |
| 211 | */ |
| 212 | static int rcu_implicit_offline_qs(struct rcu_data *rdp) |
| 213 | { |
| 214 | /* |
| 215 | * If the CPU is offline, it is in a quiescent state. We can |
| 216 | * trust its state not to change because interrupts are disabled. |
| 217 | */ |
| 218 | if (cpu_is_offline(rdp->cpu)) { |
| 219 | rdp->offline_fqs++; |
| 220 | return 1; |
| 221 | } |
| 222 | |
| 223 | /* If preemptable RCU, no point in sending reschedule IPI. */ |
| 224 | if (rdp->preemptable) |
| 225 | return 0; |
| 226 | |
| 227 | /* The CPU is online, so send it a reschedule IPI. */ |
| 228 | if (rdp->cpu != smp_processor_id()) |
| 229 | smp_send_reschedule(rdp->cpu); |
| 230 | else |
| 231 | set_need_resched(); |
| 232 | rdp->resched_ipi++; |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | #endif /* #ifdef CONFIG_SMP */ |
| 237 | |
| 238 | #ifdef CONFIG_NO_HZ |
| 239 | |
| 240 | /** |
| 241 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz |
| 242 | * |
| 243 | * Enter nohz mode, in other words, -leave- the mode in which RCU |
| 244 | * read-side critical sections can occur. (Though RCU read-side |
| 245 | * critical sections can occur in irq handlers in nohz mode, a possibility |
| 246 | * handled by rcu_irq_enter() and rcu_irq_exit()). |
| 247 | */ |
| 248 | void rcu_enter_nohz(void) |
| 249 | { |
| 250 | unsigned long flags; |
| 251 | struct rcu_dynticks *rdtp; |
| 252 | |
| 253 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
| 254 | local_irq_save(flags); |
| 255 | rdtp = &__get_cpu_var(rcu_dynticks); |
| 256 | rdtp->dynticks++; |
| 257 | rdtp->dynticks_nesting--; |
| 258 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
| 259 | local_irq_restore(flags); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * rcu_exit_nohz - inform RCU that current CPU is leaving nohz |
| 264 | * |
| 265 | * Exit nohz mode, in other words, -enter- the mode in which RCU |
| 266 | * read-side critical sections normally occur. |
| 267 | */ |
| 268 | void rcu_exit_nohz(void) |
| 269 | { |
| 270 | unsigned long flags; |
| 271 | struct rcu_dynticks *rdtp; |
| 272 | |
| 273 | local_irq_save(flags); |
| 274 | rdtp = &__get_cpu_var(rcu_dynticks); |
| 275 | rdtp->dynticks++; |
| 276 | rdtp->dynticks_nesting++; |
| 277 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
| 278 | local_irq_restore(flags); |
| 279 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * rcu_nmi_enter - inform RCU of entry to NMI context |
| 284 | * |
| 285 | * If the CPU was idle with dynamic ticks active, and there is no |
| 286 | * irq handler running, this updates rdtp->dynticks_nmi to let the |
| 287 | * RCU grace-period handling know that the CPU is active. |
| 288 | */ |
| 289 | void rcu_nmi_enter(void) |
| 290 | { |
| 291 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); |
| 292 | |
| 293 | if (rdtp->dynticks & 0x1) |
| 294 | return; |
| 295 | rdtp->dynticks_nmi++; |
| 296 | WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); |
| 297 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 298 | } |
| 299 | |
| 300 | /** |
| 301 | * rcu_nmi_exit - inform RCU of exit from NMI context |
| 302 | * |
| 303 | * If the CPU was idle with dynamic ticks active, and there is no |
| 304 | * irq handler running, this updates rdtp->dynticks_nmi to let the |
| 305 | * RCU grace-period handling know that the CPU is no longer active. |
| 306 | */ |
| 307 | void rcu_nmi_exit(void) |
| 308 | { |
| 309 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); |
| 310 | |
| 311 | if (rdtp->dynticks & 0x1) |
| 312 | return; |
| 313 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
| 314 | rdtp->dynticks_nmi++; |
| 315 | WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * rcu_irq_enter - inform RCU of entry to hard irq context |
| 320 | * |
| 321 | * If the CPU was idle with dynamic ticks active, this updates the |
| 322 | * rdtp->dynticks to let the RCU handling know that the CPU is active. |
| 323 | */ |
| 324 | void rcu_irq_enter(void) |
| 325 | { |
| 326 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); |
| 327 | |
| 328 | if (rdtp->dynticks_nesting++) |
| 329 | return; |
| 330 | rdtp->dynticks++; |
| 331 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
| 332 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 333 | } |
| 334 | |
| 335 | /** |
| 336 | * rcu_irq_exit - inform RCU of exit from hard irq context |
| 337 | * |
| 338 | * If the CPU was idle with dynamic ticks active, update the rdp->dynticks |
| 339 | * to put let the RCU handling be aware that the CPU is going back to idle |
| 340 | * with no ticks. |
| 341 | */ |
| 342 | void rcu_irq_exit(void) |
| 343 | { |
| 344 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); |
| 345 | |
| 346 | if (--rdtp->dynticks_nesting) |
| 347 | return; |
| 348 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
| 349 | rdtp->dynticks++; |
| 350 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
| 351 | |
| 352 | /* If the interrupt queued a callback, get out of dyntick mode. */ |
| 353 | if (__get_cpu_var(rcu_sched_data).nxtlist || |
| 354 | __get_cpu_var(rcu_bh_data).nxtlist) |
| 355 | set_need_resched(); |
| 356 | } |
| 357 | |
| 358 | #ifdef CONFIG_SMP |
| 359 | |
| 360 | /* |
| 361 | * Snapshot the specified CPU's dynticks counter so that we can later |
| 362 | * credit them with an implicit quiescent state. Return 1 if this CPU |
| 363 | * is in dynticks idle mode, which is an extended quiescent state. |
| 364 | */ |
| 365 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
| 366 | { |
| 367 | int ret; |
| 368 | int snap; |
| 369 | int snap_nmi; |
| 370 | |
| 371 | snap = rdp->dynticks->dynticks; |
| 372 | snap_nmi = rdp->dynticks->dynticks_nmi; |
| 373 | smp_mb(); /* Order sampling of snap with end of grace period. */ |
| 374 | rdp->dynticks_snap = snap; |
| 375 | rdp->dynticks_nmi_snap = snap_nmi; |
| 376 | ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); |
| 377 | if (ret) |
| 378 | rdp->dynticks_fqs++; |
| 379 | return ret; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Return true if the specified CPU has passed through a quiescent |
| 384 | * state by virtue of being in or having passed through an dynticks |
| 385 | * idle state since the last call to dyntick_save_progress_counter() |
| 386 | * for this same CPU. |
| 387 | */ |
| 388 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) |
| 389 | { |
| 390 | long curr; |
| 391 | long curr_nmi; |
| 392 | long snap; |
| 393 | long snap_nmi; |
| 394 | |
| 395 | curr = rdp->dynticks->dynticks; |
| 396 | snap = rdp->dynticks_snap; |
| 397 | curr_nmi = rdp->dynticks->dynticks_nmi; |
| 398 | snap_nmi = rdp->dynticks_nmi_snap; |
| 399 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ |
| 400 | |
| 401 | /* |
| 402 | * If the CPU passed through or entered a dynticks idle phase with |
| 403 | * no active irq/NMI handlers, then we can safely pretend that the CPU |
| 404 | * already acknowledged the request to pass through a quiescent |
| 405 | * state. Either way, that CPU cannot possibly be in an RCU |
| 406 | * read-side critical section that started before the beginning |
| 407 | * of the current RCU grace period. |
| 408 | */ |
| 409 | if ((curr != snap || (curr & 0x1) == 0) && |
| 410 | (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { |
| 411 | rdp->dynticks_fqs++; |
| 412 | return 1; |
| 413 | } |
| 414 | |
| 415 | /* Go check for the CPU being offline. */ |
| 416 | return rcu_implicit_offline_qs(rdp); |
| 417 | } |
| 418 | |
| 419 | #endif /* #ifdef CONFIG_SMP */ |
| 420 | |
| 421 | #else /* #ifdef CONFIG_NO_HZ */ |
| 422 | |
| 423 | #ifdef CONFIG_SMP |
| 424 | |
| 425 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
| 426 | { |
| 427 | return 0; |
| 428 | } |
| 429 | |
| 430 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) |
| 431 | { |
| 432 | return rcu_implicit_offline_qs(rdp); |
| 433 | } |
| 434 | |
| 435 | #endif /* #ifdef CONFIG_SMP */ |
| 436 | |
| 437 | #endif /* #else #ifdef CONFIG_NO_HZ */ |
| 438 | |
| 439 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| 440 | |
| 441 | static void record_gp_stall_check_time(struct rcu_state *rsp) |
| 442 | { |
| 443 | rsp->gp_start = jiffies; |
| 444 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; |
| 445 | } |
| 446 | |
| 447 | static void print_other_cpu_stall(struct rcu_state *rsp) |
| 448 | { |
| 449 | int cpu; |
| 450 | long delta; |
| 451 | unsigned long flags; |
| 452 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 453 | |
| 454 | /* Only let one CPU complain about others per time interval. */ |
| 455 | |
| 456 | spin_lock_irqsave(&rnp->lock, flags); |
| 457 | delta = jiffies - rsp->jiffies_stall; |
| 458 | if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { |
| 459 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 460 | return; |
| 461 | } |
| 462 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| 463 | |
| 464 | /* |
| 465 | * Now rat on any tasks that got kicked up to the root rcu_node |
| 466 | * due to CPU offlining. |
| 467 | */ |
| 468 | rcu_print_task_stall(rnp); |
| 469 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 470 | |
| 471 | /* OK, time to rat on our buddy... */ |
| 472 | |
| 473 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
| 474 | rcu_for_each_leaf_node(rsp, rnp) { |
| 475 | rcu_print_task_stall(rnp); |
| 476 | if (rnp->qsmask == 0) |
| 477 | continue; |
| 478 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) |
| 479 | if (rnp->qsmask & (1UL << cpu)) |
| 480 | printk(" %d", rnp->grplo + cpu); |
| 481 | } |
| 482 | printk(" (detected by %d, t=%ld jiffies)\n", |
| 483 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); |
| 484 | trigger_all_cpu_backtrace(); |
| 485 | |
| 486 | force_quiescent_state(rsp, 0); /* Kick them all. */ |
| 487 | } |
| 488 | |
| 489 | static void print_cpu_stall(struct rcu_state *rsp) |
| 490 | { |
| 491 | unsigned long flags; |
| 492 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 493 | |
| 494 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", |
| 495 | smp_processor_id(), jiffies - rsp->gp_start); |
| 496 | trigger_all_cpu_backtrace(); |
| 497 | |
| 498 | spin_lock_irqsave(&rnp->lock, flags); |
| 499 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) |
| 500 | rsp->jiffies_stall = |
| 501 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| 502 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 503 | |
| 504 | set_need_resched(); /* kick ourselves to get things going. */ |
| 505 | } |
| 506 | |
| 507 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) |
| 508 | { |
| 509 | long delta; |
| 510 | struct rcu_node *rnp; |
| 511 | |
| 512 | delta = jiffies - rsp->jiffies_stall; |
| 513 | rnp = rdp->mynode; |
| 514 | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { |
| 515 | |
| 516 | /* We haven't checked in, so go dump stack. */ |
| 517 | print_cpu_stall(rsp); |
| 518 | |
| 519 | } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) { |
| 520 | |
| 521 | /* They had two time units to dump stack, so complain. */ |
| 522 | print_other_cpu_stall(rsp); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 527 | |
| 528 | static void record_gp_stall_check_time(struct rcu_state *rsp) |
| 529 | { |
| 530 | } |
| 531 | |
| 532 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) |
| 533 | { |
| 534 | } |
| 535 | |
| 536 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 537 | |
| 538 | /* |
| 539 | * Update CPU-local rcu_data state to record the newly noticed grace period. |
| 540 | * This is used both when we started the grace period and when we notice |
| 541 | * that someone else started the grace period. The caller must hold the |
| 542 | * ->lock of the leaf rcu_node structure corresponding to the current CPU, |
| 543 | * and must have irqs disabled. |
| 544 | */ |
| 545 | static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) |
| 546 | { |
| 547 | if (rdp->gpnum != rnp->gpnum) { |
| 548 | rdp->qs_pending = 1; |
| 549 | rdp->passed_quiesc = 0; |
| 550 | rdp->gpnum = rnp->gpnum; |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) |
| 555 | { |
| 556 | unsigned long flags; |
| 557 | struct rcu_node *rnp; |
| 558 | |
| 559 | local_irq_save(flags); |
| 560 | rnp = rdp->mynode; |
| 561 | if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ |
| 562 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ |
| 563 | local_irq_restore(flags); |
| 564 | return; |
| 565 | } |
| 566 | __note_new_gpnum(rsp, rnp, rdp); |
| 567 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * Did someone else start a new RCU grace period start since we last |
| 572 | * checked? Update local state appropriately if so. Must be called |
| 573 | * on the CPU corresponding to rdp. |
| 574 | */ |
| 575 | static int |
| 576 | check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) |
| 577 | { |
| 578 | unsigned long flags; |
| 579 | int ret = 0; |
| 580 | |
| 581 | local_irq_save(flags); |
| 582 | if (rdp->gpnum != rsp->gpnum) { |
| 583 | note_new_gpnum(rsp, rdp); |
| 584 | ret = 1; |
| 585 | } |
| 586 | local_irq_restore(flags); |
| 587 | return ret; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Advance this CPU's callbacks, but only if the current grace period |
| 592 | * has ended. This may be called only from the CPU to whom the rdp |
| 593 | * belongs. In addition, the corresponding leaf rcu_node structure's |
| 594 | * ->lock must be held by the caller, with irqs disabled. |
| 595 | */ |
| 596 | static void |
| 597 | __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) |
| 598 | { |
| 599 | /* Did another grace period end? */ |
| 600 | if (rdp->completed != rnp->completed) { |
| 601 | |
| 602 | /* Advance callbacks. No harm if list empty. */ |
| 603 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; |
| 604 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; |
| 605 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 606 | |
| 607 | /* Remember that we saw this grace-period completion. */ |
| 608 | rdp->completed = rnp->completed; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Advance this CPU's callbacks, but only if the current grace period |
| 614 | * has ended. This may be called only from the CPU to whom the rdp |
| 615 | * belongs. |
| 616 | */ |
| 617 | static void |
| 618 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) |
| 619 | { |
| 620 | unsigned long flags; |
| 621 | struct rcu_node *rnp; |
| 622 | |
| 623 | local_irq_save(flags); |
| 624 | rnp = rdp->mynode; |
| 625 | if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ |
| 626 | !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ |
| 627 | local_irq_restore(flags); |
| 628 | return; |
| 629 | } |
| 630 | __rcu_process_gp_end(rsp, rnp, rdp); |
| 631 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * Do per-CPU grace-period initialization for running CPU. The caller |
| 636 | * must hold the lock of the leaf rcu_node structure corresponding to |
| 637 | * this CPU. |
| 638 | */ |
| 639 | static void |
| 640 | rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) |
| 641 | { |
| 642 | /* Prior grace period ended, so advance callbacks for current CPU. */ |
| 643 | __rcu_process_gp_end(rsp, rnp, rdp); |
| 644 | |
| 645 | /* |
| 646 | * Because this CPU just now started the new grace period, we know |
| 647 | * that all of its callbacks will be covered by this upcoming grace |
| 648 | * period, even the ones that were registered arbitrarily recently. |
| 649 | * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. |
| 650 | * |
| 651 | * Other CPUs cannot be sure exactly when the grace period started. |
| 652 | * Therefore, their recently registered callbacks must pass through |
| 653 | * an additional RCU_NEXT_READY stage, so that they will be handled |
| 654 | * by the next RCU grace period. |
| 655 | */ |
| 656 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 657 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 658 | |
| 659 | /* Set state so that this CPU will detect the next quiescent state. */ |
| 660 | __note_new_gpnum(rsp, rnp, rdp); |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | * Start a new RCU grace period if warranted, re-initializing the hierarchy |
| 665 | * in preparation for detecting the next grace period. The caller must hold |
| 666 | * the root node's ->lock, which is released before return. Hard irqs must |
| 667 | * be disabled. |
| 668 | */ |
| 669 | static void |
| 670 | rcu_start_gp(struct rcu_state *rsp, unsigned long flags) |
| 671 | __releases(rcu_get_root(rsp)->lock) |
| 672 | { |
| 673 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
| 674 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 675 | |
| 676 | if (!cpu_needs_another_gp(rsp, rdp)) { |
| 677 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 678 | return; |
| 679 | } |
| 680 | |
| 681 | /* Advance to a new grace period and initialize state. */ |
| 682 | rsp->gpnum++; |
| 683 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); |
| 684 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
| 685 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 686 | record_gp_stall_check_time(rsp); |
| 687 | dyntick_record_completed(rsp, rsp->completed - 1); |
| 688 | |
| 689 | /* Special-case the common single-level case. */ |
| 690 | if (NUM_RCU_NODES == 1) { |
| 691 | rcu_preempt_check_blocked_tasks(rnp); |
| 692 | rnp->qsmask = rnp->qsmaskinit; |
| 693 | rnp->gpnum = rsp->gpnum; |
| 694 | rnp->completed = rsp->completed; |
| 695 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
| 696 | rcu_start_gp_per_cpu(rsp, rnp, rdp); |
| 697 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | spin_unlock(&rnp->lock); /* leave irqs disabled. */ |
| 702 | |
| 703 | |
| 704 | /* Exclude any concurrent CPU-hotplug operations. */ |
| 705 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 706 | |
| 707 | /* |
| 708 | * Set the quiescent-state-needed bits in all the rcu_node |
| 709 | * structures for all currently online CPUs in breadth-first |
| 710 | * order, starting from the root rcu_node structure. This |
| 711 | * operation relies on the layout of the hierarchy within the |
| 712 | * rsp->node[] array. Note that other CPUs will access only |
| 713 | * the leaves of the hierarchy, which still indicate that no |
| 714 | * grace period is in progress, at least until the corresponding |
| 715 | * leaf node has been initialized. In addition, we have excluded |
| 716 | * CPU-hotplug operations. |
| 717 | * |
| 718 | * Note that the grace period cannot complete until we finish |
| 719 | * the initialization process, as there will be at least one |
| 720 | * qsmask bit set in the root node until that time, namely the |
| 721 | * one corresponding to this CPU, due to the fact that we have |
| 722 | * irqs disabled. |
| 723 | */ |
| 724 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 725 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 726 | rcu_preempt_check_blocked_tasks(rnp); |
| 727 | rnp->qsmask = rnp->qsmaskinit; |
| 728 | rnp->gpnum = rsp->gpnum; |
| 729 | rnp->completed = rsp->completed; |
| 730 | if (rnp == rdp->mynode) |
| 731 | rcu_start_gp_per_cpu(rsp, rnp, rdp); |
| 732 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 733 | } |
| 734 | |
| 735 | rnp = rcu_get_root(rsp); |
| 736 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 737 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
| 738 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 739 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Clean up after the prior grace period and let rcu_start_gp() start up |
| 744 | * the next grace period if one is needed. Note that the caller must |
| 745 | * hold rnp->lock, as required by rcu_start_gp(), which will release it. |
| 746 | */ |
| 747 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) |
| 748 | __releases(rcu_get_root(rsp)->lock) |
| 749 | { |
| 750 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); |
| 751 | rsp->completed = rsp->gpnum; |
| 752 | rsp->signaled = RCU_GP_IDLE; |
| 753 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Similar to cpu_quiet(), for which it is a helper function. Allows |
| 758 | * a group of CPUs to be quieted at one go, though all the CPUs in the |
| 759 | * group must be represented by the same leaf rcu_node structure. |
| 760 | * That structure's lock must be held upon entry, and it is released |
| 761 | * before return. |
| 762 | */ |
| 763 | static void |
| 764 | cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, |
| 765 | unsigned long flags) |
| 766 | __releases(rnp->lock) |
| 767 | { |
| 768 | struct rcu_node *rnp_c; |
| 769 | |
| 770 | /* Walk up the rcu_node hierarchy. */ |
| 771 | for (;;) { |
| 772 | if (!(rnp->qsmask & mask)) { |
| 773 | |
| 774 | /* Our bit has already been cleared, so done. */ |
| 775 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 776 | return; |
| 777 | } |
| 778 | rnp->qsmask &= ~mask; |
| 779 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { |
| 780 | |
| 781 | /* Other bits still set at this level, so done. */ |
| 782 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 783 | return; |
| 784 | } |
| 785 | mask = rnp->grpmask; |
| 786 | if (rnp->parent == NULL) { |
| 787 | |
| 788 | /* No more levels. Exit loop holding root lock. */ |
| 789 | |
| 790 | break; |
| 791 | } |
| 792 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 793 | rnp_c = rnp; |
| 794 | rnp = rnp->parent; |
| 795 | spin_lock_irqsave(&rnp->lock, flags); |
| 796 | WARN_ON_ONCE(rnp_c->qsmask); |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * Get here if we are the last CPU to pass through a quiescent |
| 801 | * state for this grace period. Invoke cpu_quiet_msk_finish() |
| 802 | * to clean up and start the next grace period if one is needed. |
| 803 | */ |
| 804 | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Record a quiescent state for the specified CPU, which must either be |
| 809 | * the current CPU. The lastcomp argument is used to make sure we are |
| 810 | * still in the grace period of interest. We don't want to end the current |
| 811 | * grace period based on quiescent states detected in an earlier grace |
| 812 | * period! |
| 813 | */ |
| 814 | static void |
| 815 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
| 816 | { |
| 817 | unsigned long flags; |
| 818 | unsigned long mask; |
| 819 | struct rcu_node *rnp; |
| 820 | |
| 821 | rnp = rdp->mynode; |
| 822 | spin_lock_irqsave(&rnp->lock, flags); |
| 823 | if (lastcomp != ACCESS_ONCE(rsp->completed)) { |
| 824 | |
| 825 | /* |
| 826 | * Someone beat us to it for this grace period, so leave. |
| 827 | * The race with GP start is resolved by the fact that we |
| 828 | * hold the leaf rcu_node lock, so that the per-CPU bits |
| 829 | * cannot yet be initialized -- so we would simply find our |
| 830 | * CPU's bit already cleared in cpu_quiet_msk() if this race |
| 831 | * occurred. |
| 832 | */ |
| 833 | rdp->passed_quiesc = 0; /* try again later! */ |
| 834 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 835 | return; |
| 836 | } |
| 837 | mask = rdp->grpmask; |
| 838 | if ((rnp->qsmask & mask) == 0) { |
| 839 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 840 | } else { |
| 841 | rdp->qs_pending = 0; |
| 842 | |
| 843 | /* |
| 844 | * This GP can't end until cpu checks in, so all of our |
| 845 | * callbacks can be processed during the next GP. |
| 846 | */ |
| 847 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 848 | |
| 849 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Check to see if there is a new grace period of which this CPU |
| 855 | * is not yet aware, and if so, set up local rcu_data state for it. |
| 856 | * Otherwise, see if this CPU has just passed through its first |
| 857 | * quiescent state for this grace period, and record that fact if so. |
| 858 | */ |
| 859 | static void |
| 860 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) |
| 861 | { |
| 862 | /* If there is now a new grace period, record and return. */ |
| 863 | if (check_for_new_grace_period(rsp, rdp)) |
| 864 | return; |
| 865 | |
| 866 | /* |
| 867 | * Does this CPU still need to do its part for current grace period? |
| 868 | * If no, return and let the other CPUs do their part as well. |
| 869 | */ |
| 870 | if (!rdp->qs_pending) |
| 871 | return; |
| 872 | |
| 873 | /* |
| 874 | * Was there a quiescent state since the beginning of the grace |
| 875 | * period? If no, then exit and wait for the next call. |
| 876 | */ |
| 877 | if (!rdp->passed_quiesc) |
| 878 | return; |
| 879 | |
| 880 | /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ |
| 881 | cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); |
| 882 | } |
| 883 | |
| 884 | #ifdef CONFIG_HOTPLUG_CPU |
| 885 | |
| 886 | /* |
| 887 | * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the |
| 888 | * specified flavor of RCU. The callbacks will be adopted by the next |
| 889 | * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever |
| 890 | * comes first. Because this is invoked from the CPU_DYING notifier, |
| 891 | * irqs are already disabled. |
| 892 | */ |
| 893 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) |
| 894 | { |
| 895 | int i; |
| 896 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
| 897 | |
| 898 | if (rdp->nxtlist == NULL) |
| 899 | return; /* irqs disabled, so comparison is stable. */ |
| 900 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 901 | *rsp->orphan_cbs_tail = rdp->nxtlist; |
| 902 | rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; |
| 903 | rdp->nxtlist = NULL; |
| 904 | for (i = 0; i < RCU_NEXT_SIZE; i++) |
| 905 | rdp->nxttail[i] = &rdp->nxtlist; |
| 906 | rsp->orphan_qlen += rdp->qlen; |
| 907 | rdp->qlen = 0; |
| 908 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * Adopt previously orphaned RCU callbacks. |
| 913 | */ |
| 914 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) |
| 915 | { |
| 916 | unsigned long flags; |
| 917 | struct rcu_data *rdp; |
| 918 | |
| 919 | spin_lock_irqsave(&rsp->onofflock, flags); |
| 920 | rdp = rsp->rda[smp_processor_id()]; |
| 921 | if (rsp->orphan_cbs_list == NULL) { |
| 922 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 923 | return; |
| 924 | } |
| 925 | *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; |
| 926 | rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail; |
| 927 | rdp->qlen += rsp->orphan_qlen; |
| 928 | rsp->orphan_cbs_list = NULL; |
| 929 | rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; |
| 930 | rsp->orphan_qlen = 0; |
| 931 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 932 | } |
| 933 | |
| 934 | /* |
| 935 | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy |
| 936 | * and move all callbacks from the outgoing CPU to the current one. |
| 937 | */ |
| 938 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) |
| 939 | { |
| 940 | unsigned long flags; |
| 941 | long lastcomp; |
| 942 | unsigned long mask; |
| 943 | struct rcu_data *rdp = rsp->rda[cpu]; |
| 944 | struct rcu_node *rnp; |
| 945 | |
| 946 | /* Exclude any attempts to start a new grace period. */ |
| 947 | spin_lock_irqsave(&rsp->onofflock, flags); |
| 948 | |
| 949 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
| 950 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
| 951 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
| 952 | do { |
| 953 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 954 | rnp->qsmaskinit &= ~mask; |
| 955 | if (rnp->qsmaskinit != 0) { |
| 956 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 957 | break; |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * If there was a task blocking the current grace period, |
| 962 | * and if all CPUs have checked in, we need to propagate |
| 963 | * the quiescent state up the rcu_node hierarchy. But that |
| 964 | * is inconvenient at the moment due to deadlock issues if |
| 965 | * this should end the current grace period. So set the |
| 966 | * offlined CPU's bit in ->qsmask in order to force the |
| 967 | * next force_quiescent_state() invocation to clean up this |
| 968 | * mess in a deadlock-free manner. |
| 969 | */ |
| 970 | if (rcu_preempt_offline_tasks(rsp, rnp, rdp) && !rnp->qsmask) |
| 971 | rnp->qsmask |= mask; |
| 972 | |
| 973 | mask = rnp->grpmask; |
| 974 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 975 | rnp = rnp->parent; |
| 976 | } while (rnp != NULL); |
| 977 | lastcomp = rsp->completed; |
| 978 | |
| 979 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 980 | |
| 981 | rcu_adopt_orphan_cbs(rsp); |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * Remove the specified CPU from the RCU hierarchy and move any pending |
| 986 | * callbacks that it might have to the current CPU. This code assumes |
| 987 | * that at least one CPU in the system will remain running at all times. |
| 988 | * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. |
| 989 | */ |
| 990 | static void rcu_offline_cpu(int cpu) |
| 991 | { |
| 992 | __rcu_offline_cpu(cpu, &rcu_sched_state); |
| 993 | __rcu_offline_cpu(cpu, &rcu_bh_state); |
| 994 | rcu_preempt_offline_cpu(cpu); |
| 995 | } |
| 996 | |
| 997 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ |
| 998 | |
| 999 | static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp) |
| 1000 | { |
| 1001 | } |
| 1002 | |
| 1003 | static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) |
| 1004 | { |
| 1005 | } |
| 1006 | |
| 1007 | static void rcu_offline_cpu(int cpu) |
| 1008 | { |
| 1009 | } |
| 1010 | |
| 1011 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ |
| 1012 | |
| 1013 | /* |
| 1014 | * Invoke any RCU callbacks that have made it to the end of their grace |
| 1015 | * period. Thottle as specified by rdp->blimit. |
| 1016 | */ |
| 1017 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1018 | { |
| 1019 | unsigned long flags; |
| 1020 | struct rcu_head *next, *list, **tail; |
| 1021 | int count; |
| 1022 | |
| 1023 | /* If no callbacks are ready, just return.*/ |
| 1024 | if (!cpu_has_callbacks_ready_to_invoke(rdp)) |
| 1025 | return; |
| 1026 | |
| 1027 | /* |
| 1028 | * Extract the list of ready callbacks, disabling to prevent |
| 1029 | * races with call_rcu() from interrupt handlers. |
| 1030 | */ |
| 1031 | local_irq_save(flags); |
| 1032 | list = rdp->nxtlist; |
| 1033 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; |
| 1034 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; |
| 1035 | tail = rdp->nxttail[RCU_DONE_TAIL]; |
| 1036 | for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) |
| 1037 | if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) |
| 1038 | rdp->nxttail[count] = &rdp->nxtlist; |
| 1039 | local_irq_restore(flags); |
| 1040 | |
| 1041 | /* Invoke callbacks. */ |
| 1042 | count = 0; |
| 1043 | while (list) { |
| 1044 | next = list->next; |
| 1045 | prefetch(next); |
| 1046 | list->func(list); |
| 1047 | list = next; |
| 1048 | if (++count >= rdp->blimit) |
| 1049 | break; |
| 1050 | } |
| 1051 | |
| 1052 | local_irq_save(flags); |
| 1053 | |
| 1054 | /* Update count, and requeue any remaining callbacks. */ |
| 1055 | rdp->qlen -= count; |
| 1056 | if (list != NULL) { |
| 1057 | *tail = rdp->nxtlist; |
| 1058 | rdp->nxtlist = list; |
| 1059 | for (count = 0; count < RCU_NEXT_SIZE; count++) |
| 1060 | if (&rdp->nxtlist == rdp->nxttail[count]) |
| 1061 | rdp->nxttail[count] = tail; |
| 1062 | else |
| 1063 | break; |
| 1064 | } |
| 1065 | |
| 1066 | /* Reinstate batch limit if we have worked down the excess. */ |
| 1067 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) |
| 1068 | rdp->blimit = blimit; |
| 1069 | |
| 1070 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ |
| 1071 | if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { |
| 1072 | rdp->qlen_last_fqs_check = 0; |
| 1073 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 1074 | } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) |
| 1075 | rdp->qlen_last_fqs_check = rdp->qlen; |
| 1076 | |
| 1077 | local_irq_restore(flags); |
| 1078 | |
| 1079 | /* Re-raise the RCU softirq if there are callbacks remaining. */ |
| 1080 | if (cpu_has_callbacks_ready_to_invoke(rdp)) |
| 1081 | raise_softirq(RCU_SOFTIRQ); |
| 1082 | } |
| 1083 | |
| 1084 | /* |
| 1085 | * Check to see if this CPU is in a non-context-switch quiescent state |
| 1086 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). |
| 1087 | * Also schedule the RCU softirq handler. |
| 1088 | * |
| 1089 | * This function must be called with hardirqs disabled. It is normally |
| 1090 | * invoked from the scheduling-clock interrupt. If rcu_pending returns |
| 1091 | * false, there is no point in invoking rcu_check_callbacks(). |
| 1092 | */ |
| 1093 | void rcu_check_callbacks(int cpu, int user) |
| 1094 | { |
| 1095 | if (!rcu_pending(cpu)) |
| 1096 | return; /* if nothing for RCU to do. */ |
| 1097 | if (user || |
| 1098 | (idle_cpu(cpu) && rcu_scheduler_active && |
| 1099 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
| 1100 | |
| 1101 | /* |
| 1102 | * Get here if this CPU took its interrupt from user |
| 1103 | * mode or from the idle loop, and if this is not a |
| 1104 | * nested interrupt. In this case, the CPU is in |
| 1105 | * a quiescent state, so note it. |
| 1106 | * |
| 1107 | * No memory barrier is required here because both |
| 1108 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local |
| 1109 | * variables that other CPUs neither access nor modify, |
| 1110 | * at least not while the corresponding CPU is online. |
| 1111 | */ |
| 1112 | |
| 1113 | rcu_sched_qs(cpu); |
| 1114 | rcu_bh_qs(cpu); |
| 1115 | |
| 1116 | } else if (!in_softirq()) { |
| 1117 | |
| 1118 | /* |
| 1119 | * Get here if this CPU did not take its interrupt from |
| 1120 | * softirq, in other words, if it is not interrupting |
| 1121 | * a rcu_bh read-side critical section. This is an _bh |
| 1122 | * critical section, so note it. |
| 1123 | */ |
| 1124 | |
| 1125 | rcu_bh_qs(cpu); |
| 1126 | } |
| 1127 | rcu_preempt_check_callbacks(cpu); |
| 1128 | raise_softirq(RCU_SOFTIRQ); |
| 1129 | } |
| 1130 | |
| 1131 | #ifdef CONFIG_SMP |
| 1132 | |
| 1133 | /* |
| 1134 | * Scan the leaf rcu_node structures, processing dyntick state for any that |
| 1135 | * have not yet encountered a quiescent state, using the function specified. |
| 1136 | * Returns 1 if the current grace period ends while scanning (possibly |
| 1137 | * because we made it end). |
| 1138 | */ |
| 1139 | static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, |
| 1140 | int (*f)(struct rcu_data *)) |
| 1141 | { |
| 1142 | unsigned long bit; |
| 1143 | int cpu; |
| 1144 | unsigned long flags; |
| 1145 | unsigned long mask; |
| 1146 | struct rcu_node *rnp; |
| 1147 | |
| 1148 | rcu_for_each_leaf_node(rsp, rnp) { |
| 1149 | mask = 0; |
| 1150 | spin_lock_irqsave(&rnp->lock, flags); |
| 1151 | if (rsp->completed != lastcomp) { |
| 1152 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1153 | return 1; |
| 1154 | } |
| 1155 | if (rnp->qsmask == 0) { |
| 1156 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1157 | continue; |
| 1158 | } |
| 1159 | cpu = rnp->grplo; |
| 1160 | bit = 1; |
| 1161 | for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { |
| 1162 | if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) |
| 1163 | mask |= bit; |
| 1164 | } |
| 1165 | if (mask != 0 && rsp->completed == lastcomp) { |
| 1166 | |
| 1167 | /* cpu_quiet_msk() releases rnp->lock. */ |
| 1168 | cpu_quiet_msk(mask, rsp, rnp, flags); |
| 1169 | continue; |
| 1170 | } |
| 1171 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1172 | } |
| 1173 | return 0; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * Force quiescent states on reluctant CPUs, and also detect which |
| 1178 | * CPUs are in dyntick-idle mode. |
| 1179 | */ |
| 1180 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) |
| 1181 | { |
| 1182 | unsigned long flags; |
| 1183 | long lastcomp; |
| 1184 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1185 | u8 signaled; |
| 1186 | u8 forcenow; |
| 1187 | |
| 1188 | if (!rcu_gp_in_progress(rsp)) |
| 1189 | return; /* No grace period in progress, nothing to force. */ |
| 1190 | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { |
| 1191 | rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ |
| 1192 | return; /* Someone else is already on the job. */ |
| 1193 | } |
| 1194 | if (relaxed && |
| 1195 | (long)(rsp->jiffies_force_qs - jiffies) >= 0) |
| 1196 | goto unlock_ret; /* no emergency and done recently. */ |
| 1197 | rsp->n_force_qs++; |
| 1198 | spin_lock(&rnp->lock); |
| 1199 | lastcomp = rsp->completed; |
| 1200 | signaled = rsp->signaled; |
| 1201 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 1202 | if (lastcomp == rsp->gpnum) { |
| 1203 | rsp->n_force_qs_ngp++; |
| 1204 | spin_unlock(&rnp->lock); |
| 1205 | goto unlock_ret; /* no GP in progress, time updated. */ |
| 1206 | } |
| 1207 | spin_unlock(&rnp->lock); |
| 1208 | switch (signaled) { |
| 1209 | case RCU_GP_IDLE: |
| 1210 | case RCU_GP_INIT: |
| 1211 | |
| 1212 | break; /* grace period idle or initializing, ignore. */ |
| 1213 | |
| 1214 | case RCU_SAVE_DYNTICK: |
| 1215 | |
| 1216 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) |
| 1217 | break; /* So gcc recognizes the dead code. */ |
| 1218 | |
| 1219 | /* Record dyntick-idle state. */ |
| 1220 | if (rcu_process_dyntick(rsp, lastcomp, |
| 1221 | dyntick_save_progress_counter)) |
| 1222 | goto unlock_ret; |
| 1223 | /* fall into next case. */ |
| 1224 | |
| 1225 | case RCU_SAVE_COMPLETED: |
| 1226 | |
| 1227 | /* Update state, record completion counter. */ |
| 1228 | forcenow = 0; |
| 1229 | spin_lock(&rnp->lock); |
| 1230 | if (lastcomp == rsp->completed && |
| 1231 | rsp->signaled == signaled) { |
| 1232 | rsp->signaled = RCU_FORCE_QS; |
| 1233 | dyntick_record_completed(rsp, lastcomp); |
| 1234 | forcenow = signaled == RCU_SAVE_COMPLETED; |
| 1235 | } |
| 1236 | spin_unlock(&rnp->lock); |
| 1237 | if (!forcenow) |
| 1238 | break; |
| 1239 | /* fall into next case. */ |
| 1240 | |
| 1241 | case RCU_FORCE_QS: |
| 1242 | |
| 1243 | /* Check dyntick-idle state, send IPI to laggarts. */ |
| 1244 | if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), |
| 1245 | rcu_implicit_dynticks_qs)) |
| 1246 | goto unlock_ret; |
| 1247 | |
| 1248 | /* Leave state in case more forcing is required. */ |
| 1249 | |
| 1250 | break; |
| 1251 | } |
| 1252 | unlock_ret: |
| 1253 | spin_unlock_irqrestore(&rsp->fqslock, flags); |
| 1254 | } |
| 1255 | |
| 1256 | #else /* #ifdef CONFIG_SMP */ |
| 1257 | |
| 1258 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) |
| 1259 | { |
| 1260 | set_need_resched(); |
| 1261 | } |
| 1262 | |
| 1263 | #endif /* #else #ifdef CONFIG_SMP */ |
| 1264 | |
| 1265 | /* |
| 1266 | * This does the RCU processing work from softirq context for the |
| 1267 | * specified rcu_state and rcu_data structures. This may be called |
| 1268 | * only from the CPU to whom the rdp belongs. |
| 1269 | */ |
| 1270 | static void |
| 1271 | __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1272 | { |
| 1273 | unsigned long flags; |
| 1274 | |
| 1275 | WARN_ON_ONCE(rdp->beenonline == 0); |
| 1276 | |
| 1277 | /* |
| 1278 | * If an RCU GP has gone long enough, go check for dyntick |
| 1279 | * idle CPUs and, if needed, send resched IPIs. |
| 1280 | */ |
| 1281 | if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) |
| 1282 | force_quiescent_state(rsp, 1); |
| 1283 | |
| 1284 | /* |
| 1285 | * Advance callbacks in response to end of earlier grace |
| 1286 | * period that some other CPU ended. |
| 1287 | */ |
| 1288 | rcu_process_gp_end(rsp, rdp); |
| 1289 | |
| 1290 | /* Update RCU state based on any recent quiescent states. */ |
| 1291 | rcu_check_quiescent_state(rsp, rdp); |
| 1292 | |
| 1293 | /* Does this CPU require a not-yet-started grace period? */ |
| 1294 | if (cpu_needs_another_gp(rsp, rdp)) { |
| 1295 | spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); |
| 1296 | rcu_start_gp(rsp, flags); /* releases above lock */ |
| 1297 | } |
| 1298 | |
| 1299 | /* If there are callbacks ready, invoke them. */ |
| 1300 | rcu_do_batch(rsp, rdp); |
| 1301 | } |
| 1302 | |
| 1303 | /* |
| 1304 | * Do softirq processing for the current CPU. |
| 1305 | */ |
| 1306 | static void rcu_process_callbacks(struct softirq_action *unused) |
| 1307 | { |
| 1308 | /* |
| 1309 | * Memory references from any prior RCU read-side critical sections |
| 1310 | * executed by the interrupted code must be seen before any RCU |
| 1311 | * grace-period manipulations below. |
| 1312 | */ |
| 1313 | smp_mb(); /* See above block comment. */ |
| 1314 | |
| 1315 | __rcu_process_callbacks(&rcu_sched_state, |
| 1316 | &__get_cpu_var(rcu_sched_data)); |
| 1317 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); |
| 1318 | rcu_preempt_process_callbacks(); |
| 1319 | |
| 1320 | /* |
| 1321 | * Memory references from any later RCU read-side critical sections |
| 1322 | * executed by the interrupted code must be seen after any RCU |
| 1323 | * grace-period manipulations above. |
| 1324 | */ |
| 1325 | smp_mb(); /* See above block comment. */ |
| 1326 | } |
| 1327 | |
| 1328 | static void |
| 1329 | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), |
| 1330 | struct rcu_state *rsp) |
| 1331 | { |
| 1332 | unsigned long flags; |
| 1333 | struct rcu_data *rdp; |
| 1334 | |
| 1335 | head->func = func; |
| 1336 | head->next = NULL; |
| 1337 | |
| 1338 | smp_mb(); /* Ensure RCU update seen before callback registry. */ |
| 1339 | |
| 1340 | /* |
| 1341 | * Opportunistically note grace-period endings and beginnings. |
| 1342 | * Note that we might see a beginning right after we see an |
| 1343 | * end, but never vice versa, since this CPU has to pass through |
| 1344 | * a quiescent state betweentimes. |
| 1345 | */ |
| 1346 | local_irq_save(flags); |
| 1347 | rdp = rsp->rda[smp_processor_id()]; |
| 1348 | rcu_process_gp_end(rsp, rdp); |
| 1349 | check_for_new_grace_period(rsp, rdp); |
| 1350 | |
| 1351 | /* Add the callback to our list. */ |
| 1352 | *rdp->nxttail[RCU_NEXT_TAIL] = head; |
| 1353 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; |
| 1354 | |
| 1355 | /* Start a new grace period if one not already started. */ |
| 1356 | if (!rcu_gp_in_progress(rsp)) { |
| 1357 | unsigned long nestflag; |
| 1358 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
| 1359 | |
| 1360 | spin_lock_irqsave(&rnp_root->lock, nestflag); |
| 1361 | rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * Force the grace period if too many callbacks or too long waiting. |
| 1366 | * Enforce hysteresis, and don't invoke force_quiescent_state() |
| 1367 | * if some other CPU has recently done so. Also, don't bother |
| 1368 | * invoking force_quiescent_state() if the newly enqueued callback |
| 1369 | * is the only one waiting for a grace period to complete. |
| 1370 | */ |
| 1371 | if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { |
| 1372 | rdp->blimit = LONG_MAX; |
| 1373 | if (rsp->n_force_qs == rdp->n_force_qs_snap && |
| 1374 | *rdp->nxttail[RCU_DONE_TAIL] != head) |
| 1375 | force_quiescent_state(rsp, 0); |
| 1376 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 1377 | rdp->qlen_last_fqs_check = rdp->qlen; |
| 1378 | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) |
| 1379 | force_quiescent_state(rsp, 1); |
| 1380 | local_irq_restore(flags); |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * Queue an RCU-sched callback for invocation after a grace period. |
| 1385 | */ |
| 1386 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
| 1387 | { |
| 1388 | __call_rcu(head, func, &rcu_sched_state); |
| 1389 | } |
| 1390 | EXPORT_SYMBOL_GPL(call_rcu_sched); |
| 1391 | |
| 1392 | /* |
| 1393 | * Queue an RCU for invocation after a quicker grace period. |
| 1394 | */ |
| 1395 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
| 1396 | { |
| 1397 | __call_rcu(head, func, &rcu_bh_state); |
| 1398 | } |
| 1399 | EXPORT_SYMBOL_GPL(call_rcu_bh); |
| 1400 | |
| 1401 | /* |
| 1402 | * Check to see if there is any immediate RCU-related work to be done |
| 1403 | * by the current CPU, for the specified type of RCU, returning 1 if so. |
| 1404 | * The checks are in order of increasing expense: checks that can be |
| 1405 | * carried out against CPU-local state are performed first. However, |
| 1406 | * we must check for CPU stalls first, else we might not get a chance. |
| 1407 | */ |
| 1408 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1409 | { |
| 1410 | rdp->n_rcu_pending++; |
| 1411 | |
| 1412 | /* Check for CPU stalls, if enabled. */ |
| 1413 | check_cpu_stall(rsp, rdp); |
| 1414 | |
| 1415 | /* Is the RCU core waiting for a quiescent state from this CPU? */ |
| 1416 | if (rdp->qs_pending) { |
| 1417 | rdp->n_rp_qs_pending++; |
| 1418 | return 1; |
| 1419 | } |
| 1420 | |
| 1421 | /* Does this CPU have callbacks ready to invoke? */ |
| 1422 | if (cpu_has_callbacks_ready_to_invoke(rdp)) { |
| 1423 | rdp->n_rp_cb_ready++; |
| 1424 | return 1; |
| 1425 | } |
| 1426 | |
| 1427 | /* Has RCU gone idle with this CPU needing another grace period? */ |
| 1428 | if (cpu_needs_another_gp(rsp, rdp)) { |
| 1429 | rdp->n_rp_cpu_needs_gp++; |
| 1430 | return 1; |
| 1431 | } |
| 1432 | |
| 1433 | /* Has another RCU grace period completed? */ |
| 1434 | if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */ |
| 1435 | rdp->n_rp_gp_completed++; |
| 1436 | return 1; |
| 1437 | } |
| 1438 | |
| 1439 | /* Has a new RCU grace period started? */ |
| 1440 | if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */ |
| 1441 | rdp->n_rp_gp_started++; |
| 1442 | return 1; |
| 1443 | } |
| 1444 | |
| 1445 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ |
| 1446 | if (rcu_gp_in_progress(rsp) && |
| 1447 | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { |
| 1448 | rdp->n_rp_need_fqs++; |
| 1449 | return 1; |
| 1450 | } |
| 1451 | |
| 1452 | /* nothing to do */ |
| 1453 | rdp->n_rp_need_nothing++; |
| 1454 | return 0; |
| 1455 | } |
| 1456 | |
| 1457 | /* |
| 1458 | * Check to see if there is any immediate RCU-related work to be done |
| 1459 | * by the current CPU, returning 1 if so. This function is part of the |
| 1460 | * RCU implementation; it is -not- an exported member of the RCU API. |
| 1461 | */ |
| 1462 | static int rcu_pending(int cpu) |
| 1463 | { |
| 1464 | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || |
| 1465 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || |
| 1466 | rcu_preempt_pending(cpu); |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Check to see if any future RCU-related work will need to be done |
| 1471 | * by the current CPU, even if none need be done immediately, returning |
| 1472 | * 1 if so. This function is part of the RCU implementation; it is -not- |
| 1473 | * an exported member of the RCU API. |
| 1474 | */ |
| 1475 | int rcu_needs_cpu(int cpu) |
| 1476 | { |
| 1477 | /* RCU callbacks either ready or pending? */ |
| 1478 | return per_cpu(rcu_sched_data, cpu).nxtlist || |
| 1479 | per_cpu(rcu_bh_data, cpu).nxtlist || |
| 1480 | rcu_preempt_needs_cpu(cpu); |
| 1481 | } |
| 1482 | |
| 1483 | static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; |
| 1484 | static atomic_t rcu_barrier_cpu_count; |
| 1485 | static DEFINE_MUTEX(rcu_barrier_mutex); |
| 1486 | static struct completion rcu_barrier_completion; |
| 1487 | |
| 1488 | static void rcu_barrier_callback(struct rcu_head *notused) |
| 1489 | { |
| 1490 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
| 1491 | complete(&rcu_barrier_completion); |
| 1492 | } |
| 1493 | |
| 1494 | /* |
| 1495 | * Called with preemption disabled, and from cross-cpu IRQ context. |
| 1496 | */ |
| 1497 | static void rcu_barrier_func(void *type) |
| 1498 | { |
| 1499 | int cpu = smp_processor_id(); |
| 1500 | struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); |
| 1501 | void (*call_rcu_func)(struct rcu_head *head, |
| 1502 | void (*func)(struct rcu_head *head)); |
| 1503 | |
| 1504 | atomic_inc(&rcu_barrier_cpu_count); |
| 1505 | call_rcu_func = type; |
| 1506 | call_rcu_func(head, rcu_barrier_callback); |
| 1507 | } |
| 1508 | |
| 1509 | /* |
| 1510 | * Orchestrate the specified type of RCU barrier, waiting for all |
| 1511 | * RCU callbacks of the specified type to complete. |
| 1512 | */ |
| 1513 | static void _rcu_barrier(struct rcu_state *rsp, |
| 1514 | void (*call_rcu_func)(struct rcu_head *head, |
| 1515 | void (*func)(struct rcu_head *head))) |
| 1516 | { |
| 1517 | BUG_ON(in_interrupt()); |
| 1518 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ |
| 1519 | mutex_lock(&rcu_barrier_mutex); |
| 1520 | init_completion(&rcu_barrier_completion); |
| 1521 | /* |
| 1522 | * Initialize rcu_barrier_cpu_count to 1, then invoke |
| 1523 | * rcu_barrier_func() on each CPU, so that each CPU also has |
| 1524 | * incremented rcu_barrier_cpu_count. Only then is it safe to |
| 1525 | * decrement rcu_barrier_cpu_count -- otherwise the first CPU |
| 1526 | * might complete its grace period before all of the other CPUs |
| 1527 | * did their increment, causing this function to return too |
| 1528 | * early. |
| 1529 | */ |
| 1530 | atomic_set(&rcu_barrier_cpu_count, 1); |
| 1531 | preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */ |
| 1532 | rcu_adopt_orphan_cbs(rsp); |
| 1533 | on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); |
| 1534 | preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */ |
| 1535 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
| 1536 | complete(&rcu_barrier_completion); |
| 1537 | wait_for_completion(&rcu_barrier_completion); |
| 1538 | mutex_unlock(&rcu_barrier_mutex); |
| 1539 | } |
| 1540 | |
| 1541 | /** |
| 1542 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. |
| 1543 | */ |
| 1544 | void rcu_barrier_bh(void) |
| 1545 | { |
| 1546 | _rcu_barrier(&rcu_bh_state, call_rcu_bh); |
| 1547 | } |
| 1548 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); |
| 1549 | |
| 1550 | /** |
| 1551 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. |
| 1552 | */ |
| 1553 | void rcu_barrier_sched(void) |
| 1554 | { |
| 1555 | _rcu_barrier(&rcu_sched_state, call_rcu_sched); |
| 1556 | } |
| 1557 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); |
| 1558 | |
| 1559 | /* |
| 1560 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
| 1561 | */ |
| 1562 | static void __init |
| 1563 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) |
| 1564 | { |
| 1565 | unsigned long flags; |
| 1566 | int i; |
| 1567 | struct rcu_data *rdp = rsp->rda[cpu]; |
| 1568 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1569 | |
| 1570 | /* Set up local state, ensuring consistent view of global state. */ |
| 1571 | spin_lock_irqsave(&rnp->lock, flags); |
| 1572 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); |
| 1573 | rdp->nxtlist = NULL; |
| 1574 | for (i = 0; i < RCU_NEXT_SIZE; i++) |
| 1575 | rdp->nxttail[i] = &rdp->nxtlist; |
| 1576 | rdp->qlen = 0; |
| 1577 | #ifdef CONFIG_NO_HZ |
| 1578 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); |
| 1579 | #endif /* #ifdef CONFIG_NO_HZ */ |
| 1580 | rdp->cpu = cpu; |
| 1581 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 1582 | } |
| 1583 | |
| 1584 | /* |
| 1585 | * Initialize a CPU's per-CPU RCU data. Note that only one online or |
| 1586 | * offline event can be happening at a given time. Note also that we |
| 1587 | * can accept some slop in the rsp->completed access due to the fact |
| 1588 | * that this CPU cannot possibly have any RCU callbacks in flight yet. |
| 1589 | */ |
| 1590 | static void __cpuinit |
| 1591 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) |
| 1592 | { |
| 1593 | unsigned long flags; |
| 1594 | unsigned long mask; |
| 1595 | struct rcu_data *rdp = rsp->rda[cpu]; |
| 1596 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1597 | |
| 1598 | /* Set up local state, ensuring consistent view of global state. */ |
| 1599 | spin_lock_irqsave(&rnp->lock, flags); |
| 1600 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ |
| 1601 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ |
| 1602 | rdp->beenonline = 1; /* We have now been online. */ |
| 1603 | rdp->preemptable = preemptable; |
| 1604 | rdp->qlen_last_fqs_check = 0; |
| 1605 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 1606 | rdp->blimit = blimit; |
| 1607 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 1608 | |
| 1609 | /* |
| 1610 | * A new grace period might start here. If so, we won't be part |
| 1611 | * of it, but that is OK, as we are currently in a quiescent state. |
| 1612 | */ |
| 1613 | |
| 1614 | /* Exclude any attempts to start a new GP on large systems. */ |
| 1615 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 1616 | |
| 1617 | /* Add CPU to rcu_node bitmasks. */ |
| 1618 | rnp = rdp->mynode; |
| 1619 | mask = rdp->grpmask; |
| 1620 | do { |
| 1621 | /* Exclude any attempts to start a new GP on small systems. */ |
| 1622 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 1623 | rnp->qsmaskinit |= mask; |
| 1624 | mask = rnp->grpmask; |
| 1625 | if (rnp == rdp->mynode) { |
| 1626 | rdp->gpnum = rnp->completed; /* if GP in progress... */ |
| 1627 | rdp->completed = rnp->completed; |
| 1628 | rdp->passed_quiesc_completed = rnp->completed - 1; |
| 1629 | } |
| 1630 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
| 1631 | rnp = rnp->parent; |
| 1632 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
| 1633 | |
| 1634 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 1635 | } |
| 1636 | |
| 1637 | static void __cpuinit rcu_online_cpu(int cpu) |
| 1638 | { |
| 1639 | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); |
| 1640 | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); |
| 1641 | rcu_preempt_init_percpu_data(cpu); |
| 1642 | } |
| 1643 | |
| 1644 | /* |
| 1645 | * Handle CPU online/offline notification events. |
| 1646 | */ |
| 1647 | int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| 1648 | unsigned long action, void *hcpu) |
| 1649 | { |
| 1650 | long cpu = (long)hcpu; |
| 1651 | |
| 1652 | switch (action) { |
| 1653 | case CPU_UP_PREPARE: |
| 1654 | case CPU_UP_PREPARE_FROZEN: |
| 1655 | rcu_online_cpu(cpu); |
| 1656 | break; |
| 1657 | case CPU_DYING: |
| 1658 | case CPU_DYING_FROZEN: |
| 1659 | /* |
| 1660 | * preempt_disable() in _rcu_barrier() prevents stop_machine(), |
| 1661 | * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" |
| 1662 | * returns, all online cpus have queued rcu_barrier_func(). |
| 1663 | * The dying CPU clears its cpu_online_mask bit and |
| 1664 | * moves all of its RCU callbacks to ->orphan_cbs_list |
| 1665 | * in the context of stop_machine(), so subsequent calls |
| 1666 | * to _rcu_barrier() will adopt these callbacks and only |
| 1667 | * then queue rcu_barrier_func() on all remaining CPUs. |
| 1668 | */ |
| 1669 | rcu_send_cbs_to_orphanage(&rcu_bh_state); |
| 1670 | rcu_send_cbs_to_orphanage(&rcu_sched_state); |
| 1671 | rcu_preempt_send_cbs_to_orphanage(); |
| 1672 | break; |
| 1673 | case CPU_DEAD: |
| 1674 | case CPU_DEAD_FROZEN: |
| 1675 | case CPU_UP_CANCELED: |
| 1676 | case CPU_UP_CANCELED_FROZEN: |
| 1677 | rcu_offline_cpu(cpu); |
| 1678 | break; |
| 1679 | default: |
| 1680 | break; |
| 1681 | } |
| 1682 | return NOTIFY_OK; |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * Compute the per-level fanout, either using the exact fanout specified |
| 1687 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. |
| 1688 | */ |
| 1689 | #ifdef CONFIG_RCU_FANOUT_EXACT |
| 1690 | static void __init rcu_init_levelspread(struct rcu_state *rsp) |
| 1691 | { |
| 1692 | int i; |
| 1693 | |
| 1694 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) |
| 1695 | rsp->levelspread[i] = CONFIG_RCU_FANOUT; |
| 1696 | } |
| 1697 | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ |
| 1698 | static void __init rcu_init_levelspread(struct rcu_state *rsp) |
| 1699 | { |
| 1700 | int ccur; |
| 1701 | int cprv; |
| 1702 | int i; |
| 1703 | |
| 1704 | cprv = NR_CPUS; |
| 1705 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { |
| 1706 | ccur = rsp->levelcnt[i]; |
| 1707 | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; |
| 1708 | cprv = ccur; |
| 1709 | } |
| 1710 | } |
| 1711 | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ |
| 1712 | |
| 1713 | /* |
| 1714 | * Helper function for rcu_init() that initializes one rcu_state structure. |
| 1715 | */ |
| 1716 | static void __init rcu_init_one(struct rcu_state *rsp) |
| 1717 | { |
| 1718 | int cpustride = 1; |
| 1719 | int i; |
| 1720 | int j; |
| 1721 | struct rcu_node *rnp; |
| 1722 | |
| 1723 | /* Initialize the level-tracking arrays. */ |
| 1724 | |
| 1725 | for (i = 1; i < NUM_RCU_LVLS; i++) |
| 1726 | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; |
| 1727 | rcu_init_levelspread(rsp); |
| 1728 | |
| 1729 | /* Initialize the elements themselves, starting from the leaves. */ |
| 1730 | |
| 1731 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { |
| 1732 | cpustride *= rsp->levelspread[i]; |
| 1733 | rnp = rsp->level[i]; |
| 1734 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { |
| 1735 | if (rnp != rcu_get_root(rsp)) |
| 1736 | spin_lock_init(&rnp->lock); |
| 1737 | rnp->gpnum = 0; |
| 1738 | rnp->qsmask = 0; |
| 1739 | rnp->qsmaskinit = 0; |
| 1740 | rnp->grplo = j * cpustride; |
| 1741 | rnp->grphi = (j + 1) * cpustride - 1; |
| 1742 | if (rnp->grphi >= NR_CPUS) |
| 1743 | rnp->grphi = NR_CPUS - 1; |
| 1744 | if (i == 0) { |
| 1745 | rnp->grpnum = 0; |
| 1746 | rnp->grpmask = 0; |
| 1747 | rnp->parent = NULL; |
| 1748 | } else { |
| 1749 | rnp->grpnum = j % rsp->levelspread[i - 1]; |
| 1750 | rnp->grpmask = 1UL << rnp->grpnum; |
| 1751 | rnp->parent = rsp->level[i - 1] + |
| 1752 | j / rsp->levelspread[i - 1]; |
| 1753 | } |
| 1754 | rnp->level = i; |
| 1755 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); |
| 1756 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); |
| 1757 | } |
| 1758 | } |
| 1759 | spin_lock_init(&rcu_get_root(rsp)->lock); |
| 1760 | } |
| 1761 | |
| 1762 | /* |
| 1763 | * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used |
| 1764 | * nowhere else! Assigns leaf node pointers into each CPU's rcu_data |
| 1765 | * structure. |
| 1766 | */ |
| 1767 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
| 1768 | do { \ |
| 1769 | int i; \ |
| 1770 | int j; \ |
| 1771 | struct rcu_node *rnp; \ |
| 1772 | \ |
| 1773 | rcu_init_one(rsp); \ |
| 1774 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ |
| 1775 | j = 0; \ |
| 1776 | for_each_possible_cpu(i) { \ |
| 1777 | if (i > rnp[j].grphi) \ |
| 1778 | j++; \ |
| 1779 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ |
| 1780 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ |
| 1781 | rcu_boot_init_percpu_data(i, rsp); \ |
| 1782 | } \ |
| 1783 | } while (0) |
| 1784 | |
| 1785 | void __init __rcu_init(void) |
| 1786 | { |
| 1787 | rcu_bootup_announce(); |
| 1788 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| 1789 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); |
| 1790 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 1791 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
| 1792 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); |
| 1793 | __rcu_init_preempt(); |
| 1794 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
| 1795 | } |
| 1796 | |
| 1797 | #include "rcutree_plugin.h" |
| 1798 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9
