Root/kernel/sched.c

1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/perf_event.h>
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
46#include <linux/freezer.h>
47#include <linux/vmalloc.h>
48#include <linux/blkdev.h>
49#include <linux/delay.h>
50#include <linux/pid_namespace.h>
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
59#include <linux/proc_fs.h>
60#include <linux/seq_file.h>
61#include <linux/sysctl.h>
62#include <linux/syscalls.h>
63#include <linux/times.h>
64#include <linux/tsacct_kern.h>
65#include <linux/kprobes.h>
66#include <linux/delayacct.h>
67#include <linux/unistd.h>
68#include <linux/pagemap.h>
69#include <linux/hrtimer.h>
70#include <linux/tick.h>
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
73#include <linux/ftrace.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77
78#include "sched_cpupri.h"
79
80#define CREATE_TRACE_POINTS
81#include <trace/events/sched.h>
82
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115#define DEF_TIMESLICE (100 * HZ / 1000)
116
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
122static inline int rt_policy(int policy)
123{
124    if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125        return 1;
126    return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131    return rt_policy(p->policy);
132}
133
134/*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137struct rt_prio_array {
138    DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139    struct list_head queue[MAX_RT_PRIO];
140};
141
142struct rt_bandwidth {
143    /* nests inside the rq lock: */
144    spinlock_t rt_runtime_lock;
145    ktime_t rt_period;
146    u64 rt_runtime;
147    struct hrtimer rt_period_timer;
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156    struct rt_bandwidth *rt_b =
157        container_of(timer, struct rt_bandwidth, rt_period_timer);
158    ktime_t now;
159    int overrun;
160    int idle = 0;
161
162    for (;;) {
163        now = hrtimer_cb_get_time(timer);
164        overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166        if (!overrun)
167            break;
168
169        idle = do_sched_rt_period_timer(rt_b, overrun);
170    }
171
172    return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178    rt_b->rt_period = ns_to_ktime(period);
179    rt_b->rt_runtime = runtime;
180
181    spin_lock_init(&rt_b->rt_runtime_lock);
182
183    hrtimer_init(&rt_b->rt_period_timer,
184            CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185    rt_b->rt_period_timer.function = sched_rt_period_timer;
186}
187
188static inline int rt_bandwidth_enabled(void)
189{
190    return sysctl_sched_rt_runtime >= 0;
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195    ktime_t now;
196
197    if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198        return;
199
200    if (hrtimer_active(&rt_b->rt_period_timer))
201        return;
202
203    spin_lock(&rt_b->rt_runtime_lock);
204    for (;;) {
205        unsigned long delta;
206        ktime_t soft, hard;
207
208        if (hrtimer_active(&rt_b->rt_period_timer))
209            break;
210
211        now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212        hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214        soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215        hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216        delta = ktime_to_ns(ktime_sub(hard, soft));
217        __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218                HRTIMER_MODE_ABS_PINNED, 0);
219    }
220    spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226    hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
236#ifdef CONFIG_GROUP_SCHED
237
238#include <linux/cgroup.h>
239
240struct cfs_rq;
241
242static LIST_HEAD(task_groups);
243
244/* task group related information */
245struct task_group {
246#ifdef CONFIG_CGROUP_SCHED
247    struct cgroup_subsys_state css;
248#endif
249
250#ifdef CONFIG_USER_SCHED
251    uid_t uid;
252#endif
253
254#ifdef CONFIG_FAIR_GROUP_SCHED
255    /* schedulable entities of this group on each cpu */
256    struct sched_entity **se;
257    /* runqueue "owned" by this group on each cpu */
258    struct cfs_rq **cfs_rq;
259    unsigned long shares;
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263    struct sched_rt_entity **rt_se;
264    struct rt_rq **rt_rq;
265
266    struct rt_bandwidth rt_bandwidth;
267#endif
268
269    struct rcu_head rcu;
270    struct list_head list;
271
272    struct task_group *parent;
273    struct list_head siblings;
274    struct list_head children;
275};
276
277#ifdef CONFIG_USER_SCHED
278
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282    user->tg->uid = user->uid;
283}
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
292#ifdef CONFIG_FAIR_GROUP_SCHED
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297#endif /* CONFIG_FAIR_GROUP_SCHED */
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group
305#endif /* CONFIG_USER_SCHED */
306
307/* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310static DEFINE_SPINLOCK(task_group_lock);
311
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317    return list_empty(&root_task_group.children);
318}
319#endif
320
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323#else /* !CONFIG_USER_SCHED */
324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325#endif /* CONFIG_USER_SCHED */
326
327/*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335#define MIN_SHARES 2
336#define MAX_SHARES (1UL << 18)
337
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
341/* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344struct task_group init_task_group;
345
346/* return group to which a task belongs */
347static inline struct task_group *task_group(struct task_struct *p)
348{
349    struct task_group *tg;
350
351#ifdef CONFIG_USER_SCHED
352    rcu_read_lock();
353    tg = __task_cred(p)->user->tg;
354    rcu_read_unlock();
355#elif defined(CONFIG_CGROUP_SCHED)
356    tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357                struct task_group, css);
358#else
359    tg = &init_task_group;
360#endif
361    return tg;
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366{
367#ifdef CONFIG_FAIR_GROUP_SCHED
368    p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369    p->se.parent = task_group(p)->se[cpu];
370#endif
371
372#ifdef CONFIG_RT_GROUP_SCHED
373    p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374    p->rt.parent = task_group(p)->rt_se[cpu];
375#endif
376}
377
378#else
379
380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381static inline struct task_group *task_group(struct task_struct *p)
382{
383    return NULL;
384}
385
386#endif /* CONFIG_GROUP_SCHED */
387
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390    struct load_weight load;
391    unsigned long nr_running;
392
393    u64 exec_clock;
394    u64 min_vruntime;
395
396    struct rb_root tasks_timeline;
397    struct rb_node *rb_leftmost;
398
399    struct list_head tasks;
400    struct list_head *balance_iterator;
401
402    /*
403     * 'curr' points to currently running entity on this cfs_rq.
404     * It is set to NULL otherwise (i.e when none are currently running).
405     */
406    struct sched_entity *curr, *next, *last;
407
408    unsigned int nr_spread_over;
409
410#ifdef CONFIG_FAIR_GROUP_SCHED
411    struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413    /*
414     * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415     * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416     * (like users, containers etc.)
417     *
418     * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419     * list is used during load balance.
420     */
421    struct list_head leaf_cfs_rq_list;
422    struct task_group *tg; /* group that "owns" this runqueue */
423
424#ifdef CONFIG_SMP
425    /*
426     * the part of load.weight contributed by tasks
427     */
428    unsigned long task_weight;
429
430    /*
431     * h_load = weight * f(tg)
432     *
433     * Where f(tg) is the recursive weight fraction assigned to
434     * this group.
435     */
436    unsigned long h_load;
437
438    /*
439     * this cpu's part of tg->shares
440     */
441    unsigned long shares;
442
443    /*
444     * load.weight at the time we set shares
445     */
446    unsigned long rq_weight;
447#endif
448#endif
449};
450
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453    struct rt_prio_array active;
454    unsigned long rt_nr_running;
455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456    struct {
457        int curr; /* highest queued rt task prio */
458#ifdef CONFIG_SMP
459        int next; /* next highest */
460#endif
461    } highest_prio;
462#endif
463#ifdef CONFIG_SMP
464    unsigned long rt_nr_migratory;
465    unsigned long rt_nr_total;
466    int overloaded;
467    struct plist_head pushable_tasks;
468#endif
469    int rt_throttled;
470    u64 rt_time;
471    u64 rt_runtime;
472    /* Nests inside the rq lock: */
473    spinlock_t rt_runtime_lock;
474
475#ifdef CONFIG_RT_GROUP_SCHED
476    unsigned long rt_nr_boosted;
477
478    struct rq *rq;
479    struct list_head leaf_rt_rq_list;
480    struct task_group *tg;
481    struct sched_rt_entity *rt_se;
482#endif
483};
484
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495struct root_domain {
496    atomic_t refcount;
497    cpumask_var_t span;
498    cpumask_var_t online;
499
500    /*
501     * The "RT overload" flag: it gets set if a CPU has more than
502     * one runnable RT task.
503     */
504    cpumask_var_t rto_mask;
505    atomic_t rto_count;
506#ifdef CONFIG_SMP
507    struct cpupri cpupri;
508#endif
509};
510
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515static struct root_domain def_root_domain;
516
517#endif
518
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526struct rq {
527    /* runqueue lock: */
528    spinlock_t lock;
529
530    /*
531     * nr_running and cpu_load should be in the same cacheline because
532     * remote CPUs use both these fields when doing load calculation.
533     */
534    unsigned long nr_running;
535    #define CPU_LOAD_IDX_MAX 5
536    unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537#ifdef CONFIG_NO_HZ
538    unsigned long last_tick_seen;
539    unsigned char in_nohz_recently;
540#endif
541    /* capture load from *all* tasks on this cpu: */
542    struct load_weight load;
543    unsigned long nr_load_updates;
544    u64 nr_switches;
545    u64 nr_migrations_in;
546
547    struct cfs_rq cfs;
548    struct rt_rq rt;
549
550#ifdef CONFIG_FAIR_GROUP_SCHED
551    /* list of leaf cfs_rq on this cpu: */
552    struct list_head leaf_cfs_rq_list;
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
555    struct list_head leaf_rt_rq_list;
556#endif
557
558    /*
559     * This is part of a global counter where only the total sum
560     * over all CPUs matters. A task can increase this counter on
561     * one CPU and if it got migrated afterwards it may decrease
562     * it on another CPU. Always updated under the runqueue lock:
563     */
564    unsigned long nr_uninterruptible;
565
566    struct task_struct *curr, *idle;
567    unsigned long next_balance;
568    struct mm_struct *prev_mm;
569
570    u64 clock;
571
572    atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
575    struct root_domain *rd;
576    struct sched_domain *sd;
577
578    unsigned char idle_at_tick;
579    /* For active balancing */
580    int post_schedule;
581    int active_balance;
582    int push_cpu;
583    /* cpu of this runqueue: */
584    int cpu;
585    int online;
586
587    unsigned long avg_load_per_task;
588
589    struct task_struct *migration_thread;
590    struct list_head migration_queue;
591
592    u64 rt_avg;
593    u64 age_stamp;
594    u64 idle_stamp;
595    u64 avg_idle;
596#endif
597
598    /* calc_load related fields */
599    unsigned long calc_load_update;
600    long calc_load_active;
601
602#ifdef CONFIG_SCHED_HRTICK
603#ifdef CONFIG_SMP
604    int hrtick_csd_pending;
605    struct call_single_data hrtick_csd;
606#endif
607    struct hrtimer hrtick_timer;
608#endif
609
610#ifdef CONFIG_SCHEDSTATS
611    /* latency stats */
612    struct sched_info rq_sched_info;
613    unsigned long long rq_cpu_time;
614    /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616    /* sys_sched_yield() stats */
617    unsigned int yld_count;
618
619    /* schedule() stats */
620    unsigned int sched_switch;
621    unsigned int sched_count;
622    unsigned int sched_goidle;
623
624    /* try_to_wake_up() stats */
625    unsigned int ttwu_count;
626    unsigned int ttwu_local;
627
628    /* BKL stats */
629    unsigned int bkl_count;
630#endif
631};
632
633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637{
638    rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639}
640
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644    return rq->cpu;
645#else
646    return 0;
647#endif
648}
649
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657#define for_each_domain(cpu, __sd) \
658    for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664#define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666inline void update_rq_clock(struct rq *rq)
667{
668    rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
680/**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688int runqueue_is_locked(int cpu)
689{
690    return spin_is_locked(&cpu_rq(cpu)->lock);
691}
692
693/*
694 * Debugging: various feature bits
695 */
696
697#define SCHED_FEAT(name, enabled) \
698    __SCHED_FEAT_##name ,
699
700enum {
701#include "sched_features.h"
702};
703
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707    (1UL << __SCHED_FEAT_##name) * enabled |
708
709const_debug unsigned int sysctl_sched_features =
710#include "sched_features.h"
711    0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717    #name ,
718
719static __read_mostly char *sched_feat_names[] = {
720#include "sched_features.h"
721    NULL
722};
723
724#undef SCHED_FEAT
725
726static int sched_feat_show(struct seq_file *m, void *v)
727{
728    int i;
729
730    for (i = 0; sched_feat_names[i]; i++) {
731        if (!(sysctl_sched_features & (1UL << i)))
732            seq_puts(m, "NO_");
733        seq_printf(m, "%s ", sched_feat_names[i]);
734    }
735    seq_puts(m, "\n");
736
737    return 0;
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742        size_t cnt, loff_t *ppos)
743{
744    char buf[64];
745    char *cmp = buf;
746    int neg = 0;
747    int i;
748
749    if (cnt > 63)
750        cnt = 63;
751
752    if (copy_from_user(&buf, ubuf, cnt))
753        return -EFAULT;
754
755    buf[cnt] = 0;
756
757    if (strncmp(buf, "NO_", 3) == 0) {
758        neg = 1;
759        cmp += 3;
760    }
761
762    for (i = 0; sched_feat_names[i]; i++) {
763        int len = strlen(sched_feat_names[i]);
764
765        if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766            if (neg)
767                sysctl_sched_features &= ~(1UL << i);
768            else
769                sysctl_sched_features |= (1UL << i);
770            break;
771        }
772    }
773
774    if (!sched_feat_names[i])
775        return -EINVAL;
776
777    filp->f_pos += cnt;
778
779    return cnt;
780}
781
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784    return single_open(filp, sched_feat_show, NULL);
785}
786
787static const struct file_operations sched_feat_fops = {
788    .open = sched_feat_open,
789    .write = sched_feat_write,
790    .read = seq_read,
791    .llseek = seq_lseek,
792    .release = single_release,
793};
794
795static __init int sched_init_debug(void)
796{
797    debugfs_create_file("sched_features", 0644, NULL, NULL,
798            &sched_feat_fops);
799
800    return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814/*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818unsigned int sysctl_sched_shares_ratelimit = 250000;
819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836/*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840unsigned int sysctl_sched_rt_period = 1000000;
841
842static __read_mostly int scheduler_running;
843
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
849
850static inline u64 global_rt_period(void)
851{
852    return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
857    if (sysctl_sched_rt_runtime < 0)
858        return RUNTIME_INF;
859
860    return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
862
863#ifndef prepare_arch_switch
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872    return rq->curr == p;
873}
874
875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
876static inline int task_running(struct rq *rq, struct task_struct *p)
877{
878    return task_current(rq, p);
879}
880
881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882{
883}
884
885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886{
887#ifdef CONFIG_DEBUG_SPINLOCK
888    /* this is a valid case when another task releases the spinlock */
889    rq->lock.owner = current;
890#endif
891    /*
892     * If we are tracking spinlock dependencies then we have to
893     * fix up the runqueue lock - which gets 'carried over' from
894     * prev into current:
895     */
896    spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898    spin_unlock_irq(&rq->lock);
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
902static inline int task_running(struct rq *rq, struct task_struct *p)
903{
904#ifdef CONFIG_SMP
905    return p->oncpu;
906#else
907    return task_current(rq, p);
908#endif
909}
910
911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912{
913#ifdef CONFIG_SMP
914    /*
915     * We can optimise this out completely for !SMP, because the
916     * SMP rebalancing from interrupt is the only thing that cares
917     * here.
918     */
919    next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922    spin_unlock_irq(&rq->lock);
923#else
924    spin_unlock(&rq->lock);
925#endif
926}
927
928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929{
930#ifdef CONFIG_SMP
931    /*
932     * After ->oncpu is cleared, the task can be moved to a different CPU.
933     * We must ensure this doesn't happen until the switch is completely
934     * finished.
935     */
936    smp_wmb();
937    prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940    local_irq_enable();
941#endif
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949static inline struct rq *__task_rq_lock(struct task_struct *p)
950    __acquires(rq->lock)
951{
952    for (;;) {
953        struct rq *rq = task_rq(p);
954        spin_lock(&rq->lock);
955        if (likely(rq == task_rq(p)))
956            return rq;
957        spin_unlock(&rq->lock);
958    }
959}
960
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967    __acquires(rq->lock)
968{
969    struct rq *rq;
970
971    for (;;) {
972        local_irq_save(*flags);
973        rq = task_rq(p);
974        spin_lock(&rq->lock);
975        if (likely(rq == task_rq(p)))
976            return rq;
977        spin_unlock_irqrestore(&rq->lock, *flags);
978    }
979}
980
981void task_rq_unlock_wait(struct task_struct *p)
982{
983    struct rq *rq = task_rq(p);
984
985    smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986    spin_unlock_wait(&rq->lock);
987}
988
989static void __task_rq_unlock(struct rq *rq)
990    __releases(rq->lock)
991{
992    spin_unlock(&rq->lock);
993}
994
995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996    __releases(rq->lock)
997{
998    spin_unlock_irqrestore(&rq->lock, *flags);
999}
1000
1001/*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004static struct rq *this_rq_lock(void)
1005    __acquires(rq->lock)
1006{
1007    struct rq *rq;
1008
1009    local_irq_disable();
1010    rq = this_rq();
1011    spin_lock(&rq->lock);
1012
1013    return rq;
1014}
1015
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035    if (!sched_feat(HRTICK))
1036        return 0;
1037    if (!cpu_active(cpu_of(rq)))
1038        return 0;
1039    return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
1042static void hrtick_clear(struct rq *rq)
1043{
1044    if (hrtimer_active(&rq->hrtick_timer))
1045        hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054    struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056    WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058    spin_lock(&rq->lock);
1059    update_rq_clock(rq);
1060    rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061    spin_unlock(&rq->lock);
1062
1063    return HRTIMER_NORESTART;
1064}
1065
1066#ifdef CONFIG_SMP
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
1071{
1072    struct rq *rq = arg;
1073
1074    spin_lock(&rq->lock);
1075    hrtimer_restart(&rq->hrtick_timer);
1076    rq->hrtick_csd_pending = 0;
1077    spin_unlock(&rq->lock);
1078}
1079
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
1086{
1087    struct hrtimer *timer = &rq->hrtick_timer;
1088    ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090    hrtimer_set_expires(timer, time);
1091
1092    if (rq == this_rq()) {
1093        hrtimer_restart(timer);
1094    } else if (!rq->hrtick_csd_pending) {
1095        __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096        rq->hrtick_csd_pending = 1;
1097    }
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103    int cpu = (int)(long)hcpu;
1104
1105    switch (action) {
1106    case CPU_UP_CANCELED:
1107    case CPU_UP_CANCELED_FROZEN:
1108    case CPU_DOWN_PREPARE:
1109    case CPU_DOWN_PREPARE_FROZEN:
1110    case CPU_DEAD:
1111    case CPU_DEAD_FROZEN:
1112        hrtick_clear(cpu_rq(cpu));
1113        return NOTIFY_OK;
1114    }
1115
1116    return NOTIFY_DONE;
1117}
1118
1119static __init void init_hrtick(void)
1120{
1121    hotcpu_notifier(hotplug_hrtick, 0);
1122}
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
1131    __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132            HRTIMER_MODE_REL_PINNED, 0);
1133}
1134
1135static inline void init_hrtick(void)
1136{
1137}
1138#endif /* CONFIG_SMP */
1139
1140static void init_rq_hrtick(struct rq *rq)
1141{
1142#ifdef CONFIG_SMP
1143    rq->hrtick_csd_pending = 0;
1144
1145    rq->hrtick_csd.flags = 0;
1146    rq->hrtick_csd.func = __hrtick_start;
1147    rq->hrtick_csd.info = rq;
1148#endif
1149
1150    hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151    rq->hrtick_timer.function = hrtick;
1152}
1153#else /* CONFIG_SCHED_HRTICK */
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
1162static inline void init_hrtick(void)
1163{
1164}
1165#endif /* CONFIG_SCHED_HRTICK */
1166
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
1180static void resched_task(struct task_struct *p)
1181{
1182    int cpu;
1183
1184    assert_spin_locked(&task_rq(p)->lock);
1185
1186    if (test_tsk_need_resched(p))
1187        return;
1188
1189    set_tsk_need_resched(p);
1190
1191    cpu = task_cpu(p);
1192    if (cpu == smp_processor_id())
1193        return;
1194
1195    /* NEED_RESCHED must be visible before we test polling */
1196    smp_mb();
1197    if (!tsk_is_polling(p))
1198        smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203    struct rq *rq = cpu_rq(cpu);
1204    unsigned long flags;
1205
1206    if (!spin_trylock_irqsave(&rq->lock, flags))
1207        return;
1208    resched_task(cpu_curr(cpu));
1209    spin_unlock_irqrestore(&rq->lock, flags);
1210}
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225    struct rq *rq = cpu_rq(cpu);
1226
1227    if (cpu == smp_processor_id())
1228        return;
1229
1230    /*
1231     * This is safe, as this function is called with the timer
1232     * wheel base lock of (cpu) held. When the CPU is on the way
1233     * to idle and has not yet set rq->curr to idle then it will
1234     * be serialized on the timer wheel base lock and take the new
1235     * timer into account automatically.
1236     */
1237    if (rq->curr != rq->idle)
1238        return;
1239
1240    /*
1241     * We can set TIF_RESCHED on the idle task of the other CPU
1242     * lockless. The worst case is that the other CPU runs the
1243     * idle task through an additional NOOP schedule()
1244     */
1245    set_tsk_need_resched(rq->idle);
1246
1247    /* NEED_RESCHED must be visible before we test polling */
1248    smp_mb();
1249    if (!tsk_is_polling(rq->idle))
1250        smp_send_reschedule(cpu);
1251}
1252#endif /* CONFIG_NO_HZ */
1253
1254static u64 sched_avg_period(void)
1255{
1256    return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261    s64 period = sched_avg_period();
1262
1263    while ((s64)(rq->clock - rq->age_stamp) > period) {
1264        rq->age_stamp += period;
1265        rq->rt_avg /= 2;
1266    }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271    rq->rt_avg += rt_delta;
1272    sched_avg_update(rq);
1273}
1274
1275#else /* !CONFIG_SMP */
1276static void resched_task(struct task_struct *p)
1277{
1278    assert_spin_locked(&task_rq(p)->lock);
1279    set_tsk_need_resched(p);
1280}
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
1285#endif /* CONFIG_SMP */
1286
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
1295/*
1296 * Shift right and round:
1297 */
1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300/*
1301 * delta *= weight / lw
1302 */
1303static unsigned long
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305        struct load_weight *lw)
1306{
1307    u64 tmp;
1308
1309    if (!lw->inv_weight) {
1310        if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311            lw->inv_weight = 1;
1312        else
1313            lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314                / (lw->weight+1);
1315    }
1316
1317    tmp = (u64)delta_exec * weight;
1318    /*
1319     * Check whether we'd overflow the 64-bit multiplication:
1320     */
1321    if (unlikely(tmp > WMULT_CONST))
1322        tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323            WMULT_SHIFT/2);
1324    else
1325        tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327    return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328}
1329
1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331{
1332    lw->weight += inc;
1333    lw->inv_weight = 0;
1334}
1335
1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337{
1338    lw->weight -= dec;
1339    lw->inv_weight = 0;
1340}
1341
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375};
1376
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393};
1394
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403    void *arg;
1404    struct task_struct *(*start)(void *);
1405    struct task_struct *(*next)(void *);
1406};
1407
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411          unsigned long max_load_move, struct sched_domain *sd,
1412          enum cpu_idle_type idle, int *all_pinned,
1413          int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417           struct sched_domain *sd, enum cpu_idle_type idle,
1418           struct rq_iterator *iterator);
1419#endif
1420
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423    CPUACCT_STAT_USER, /* ... user mode */
1424    CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426    CPUACCT_STAT_NSTATS,
1427};
1428
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432        enum cpuacct_stat_index idx, cputime_t val);
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436        enum cpuacct_stat_index idx, cputime_t val) {}
1437#endif
1438
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441    update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446    update_load_sub(&rq->load, load);
1447}
1448
1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457{
1458    struct task_group *parent, *child;
1459    int ret;
1460
1461    rcu_read_lock();
1462    parent = &root_task_group;
1463down:
1464    ret = (*down)(parent, data);
1465    if (ret)
1466        goto out_unlock;
1467    list_for_each_entry_rcu(child, &parent->children, siblings) {
1468        parent = child;
1469        goto down;
1470
1471up:
1472        continue;
1473    }
1474    ret = (*up)(parent, data);
1475    if (ret)
1476        goto out_unlock;
1477
1478    child = parent;
1479    parent = parent->parent;
1480    if (parent)
1481        goto up;
1482out_unlock:
1483    rcu_read_unlock();
1484
1485    return ret;
1486}
1487
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490    return 0;
1491}
1492#endif
1493
1494#ifdef CONFIG_SMP
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498    return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510    struct rq *rq = cpu_rq(cpu);
1511    unsigned long total = weighted_cpuload(cpu);
1512
1513    if (type == 0 || !sched_feat(LB_BIAS))
1514        return total;
1515
1516    return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525    struct rq *rq = cpu_rq(cpu);
1526    unsigned long total = weighted_cpuload(cpu);
1527
1528    if (type == 0 || !sched_feat(LB_BIAS))
1529        return total;
1530
1531    return max(rq->cpu_load[type-1], total);
1532}
1533
1534static struct sched_group *group_of(int cpu)
1535{
1536    struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538    if (!sd)
1539        return NULL;
1540
1541    return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546    struct sched_group *group = group_of(cpu);
1547
1548    if (!group)
1549        return SCHED_LOAD_SCALE;
1550
1551    return group->cpu_power;
1552}
1553
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558    struct rq *rq = cpu_rq(cpu);
1559    unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561    if (nr_running)
1562        rq->avg_load_per_task = rq->load.weight / nr_running;
1563    else
1564        rq->avg_load_per_task = 0;
1565
1566    return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571static __read_mostly unsigned long *update_shares_data;
1572
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579                    unsigned long sd_shares,
1580                    unsigned long sd_rq_weight,
1581                    unsigned long *usd_rq_weight)
1582{
1583    unsigned long shares, rq_weight;
1584    int boost = 0;
1585
1586    rq_weight = usd_rq_weight[cpu];
1587    if (!rq_weight) {
1588        boost = 1;
1589        rq_weight = NICE_0_LOAD;
1590    }
1591
1592    /*
1593     * \Sum_j shares_j * rq_weight_i
1594     * shares_i = -----------------------------
1595     * \Sum_j rq_weight_j
1596     */
1597    shares = (sd_shares * rq_weight) / sd_rq_weight;
1598    shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600    if (abs(shares - tg->se[cpu]->load.weight) >
1601            sysctl_sched_shares_thresh) {
1602        struct rq *rq = cpu_rq(cpu);
1603        unsigned long flags;
1604
1605        spin_lock_irqsave(&rq->lock, flags);
1606        tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607        tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608        __set_se_shares(tg->se[cpu], shares);
1609        spin_unlock_irqrestore(&rq->lock, flags);
1610    }
1611}
1612
1613/*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618static int tg_shares_up(struct task_group *tg, void *data)
1619{
1620    unsigned long weight, rq_weight = 0, shares = 0;
1621    unsigned long *usd_rq_weight;
1622    struct sched_domain *sd = data;
1623    unsigned long flags;
1624    int i;
1625
1626    if (!tg->se[0])
1627        return 0;
1628
1629    local_irq_save(flags);
1630    usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632    for_each_cpu(i, sched_domain_span(sd)) {
1633        weight = tg->cfs_rq[i]->load.weight;
1634        usd_rq_weight[i] = weight;
1635
1636        /*
1637         * If there are currently no tasks on the cpu pretend there
1638         * is one of average load so that when a new task gets to
1639         * run here it will not get delayed by group starvation.
1640         */
1641        if (!weight)
1642            weight = NICE_0_LOAD;
1643
1644        rq_weight += weight;
1645        shares += tg->cfs_rq[i]->shares;
1646    }
1647
1648    if ((!shares && rq_weight) || shares > tg->shares)
1649        shares = tg->shares;
1650
1651    if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652        shares = tg->shares;
1653
1654    for_each_cpu(i, sched_domain_span(sd))
1655        update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1656
1657    local_irq_restore(flags);
1658
1659    return 0;
1660}
1661
1662/*
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1666 */
1667static int tg_load_down(struct task_group *tg, void *data)
1668{
1669    unsigned long load;
1670    long cpu = (long)data;
1671
1672    if (!tg->parent) {
1673        load = cpu_rq(cpu)->load.weight;
1674    } else {
1675        load = tg->parent->cfs_rq[cpu]->h_load;
1676        load *= tg->cfs_rq[cpu]->shares;
1677        load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1678    }
1679
1680    tg->cfs_rq[cpu]->h_load = load;
1681
1682    return 0;
1683}
1684
1685static void update_shares(struct sched_domain *sd)
1686{
1687    s64 elapsed;
1688    u64 now;
1689
1690    if (root_task_group_empty())
1691        return;
1692
1693    now = cpu_clock(raw_smp_processor_id());
1694    elapsed = now - sd->last_update;
1695
1696    if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697        sd->last_update = now;
1698        walk_tg_tree(tg_nop, tg_shares_up, sd);
1699    }
1700}
1701
1702static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703{
1704    if (root_task_group_empty())
1705        return;
1706
1707    spin_unlock(&rq->lock);
1708    update_shares(sd);
1709    spin_lock(&rq->lock);
1710}
1711
1712static void update_h_load(long cpu)
1713{
1714    if (root_task_group_empty())
1715        return;
1716
1717    walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1718}
1719
1720#else
1721
1722static inline void update_shares(struct sched_domain *sd)
1723{
1724}
1725
1726static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1727{
1728}
1729
1730#endif
1731
1732#ifdef CONFIG_PREEMPT
1733
1734static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1735
1736/*
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1743 */
1744static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745    __releases(this_rq->lock)
1746    __acquires(busiest->lock)
1747    __acquires(this_rq->lock)
1748{
1749    spin_unlock(&this_rq->lock);
1750    double_rq_lock(this_rq, busiest);
1751
1752    return 1;
1753}
1754
1755#else
1756/*
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1762 */
1763static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764    __releases(this_rq->lock)
1765    __acquires(busiest->lock)
1766    __acquires(this_rq->lock)
1767{
1768    int ret = 0;
1769
1770    if (unlikely(!spin_trylock(&busiest->lock))) {
1771        if (busiest < this_rq) {
1772            spin_unlock(&this_rq->lock);
1773            spin_lock(&busiest->lock);
1774            spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775            ret = 1;
1776        } else
1777            spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778    }
1779    return ret;
1780}
1781
1782#endif /* CONFIG_PREEMPT */
1783
1784/*
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 */
1787static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788{
1789    if (unlikely(!irqs_disabled())) {
1790        /* printk() doesn't work good under rq->lock */
1791        spin_unlock(&this_rq->lock);
1792        BUG_ON(1);
1793    }
1794
1795    return _double_lock_balance(this_rq, busiest);
1796}
1797
1798static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799    __releases(busiest->lock)
1800{
1801    spin_unlock(&busiest->lock);
1802    lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803}
1804#endif
1805
1806#ifdef CONFIG_FAIR_GROUP_SCHED
1807static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808{
1809#ifdef CONFIG_SMP
1810    cfs_rq->shares = shares;
1811#endif
1812}
1813#endif
1814
1815static void calc_load_account_active(struct rq *this_rq);
1816static void update_sysctl(void);
1817
1818#include "sched_stats.h"
1819#include "sched_idletask.c"
1820#include "sched_fair.c"
1821#include "sched_rt.c"
1822#ifdef CONFIG_SCHED_DEBUG
1823# include "sched_debug.c"
1824#endif
1825
1826#define sched_class_highest (&rt_sched_class)
1827#define for_each_class(class) \
1828   for (class = sched_class_highest; class; class = class->next)
1829
1830static void inc_nr_running(struct rq *rq)
1831{
1832    rq->nr_running++;
1833}
1834
1835static void dec_nr_running(struct rq *rq)
1836{
1837    rq->nr_running--;
1838}
1839
1840static void set_load_weight(struct task_struct *p)
1841{
1842    if (task_has_rt_policy(p)) {
1843        p->se.load.weight = prio_to_weight[0] * 2;
1844        p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1845        return;
1846    }
1847
1848    /*
1849     * SCHED_IDLE tasks get minimal weight:
1850     */
1851    if (p->policy == SCHED_IDLE) {
1852        p->se.load.weight = WEIGHT_IDLEPRIO;
1853        p->se.load.inv_weight = WMULT_IDLEPRIO;
1854        return;
1855    }
1856
1857    p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1858    p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1859}
1860
1861static void update_avg(u64 *avg, u64 sample)
1862{
1863    s64 diff = sample - *avg;
1864    *avg += diff >> 3;
1865}
1866
1867static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1868{
1869    if (wakeup)
1870        p->se.start_runtime = p->se.sum_exec_runtime;
1871
1872    sched_info_queued(p);
1873    p->sched_class->enqueue_task(rq, p, wakeup);
1874    p->se.on_rq = 1;
1875}
1876
1877static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1878{
1879    if (sleep) {
1880        if (p->se.last_wakeup) {
1881            update_avg(&p->se.avg_overlap,
1882                p->se.sum_exec_runtime - p->se.last_wakeup);
1883            p->se.last_wakeup = 0;
1884        } else {
1885            update_avg(&p->se.avg_wakeup,
1886                sysctl_sched_wakeup_granularity);
1887        }
1888    }
1889
1890    sched_info_dequeued(p);
1891    p->sched_class->dequeue_task(rq, p, sleep);
1892    p->se.on_rq = 0;
1893}
1894
1895/*
1896 * __normal_prio - return the priority that is based on the static prio
1897 */
1898static inline int __normal_prio(struct task_struct *p)
1899{
1900    return p->static_prio;
1901}
1902
1903/*
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1909 */
1910static inline int normal_prio(struct task_struct *p)
1911{
1912    int prio;
1913
1914    if (task_has_rt_policy(p))
1915        prio = MAX_RT_PRIO-1 - p->rt_priority;
1916    else
1917        prio = __normal_prio(p);
1918    return prio;
1919}
1920
1921/*
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1927 */
1928static int effective_prio(struct task_struct *p)
1929{
1930    p->normal_prio = normal_prio(p);
1931    /*
1932     * If we are RT tasks or we were boosted to RT priority,
1933     * keep the priority unchanged. Otherwise, update priority
1934     * to the normal priority:
1935     */
1936    if (!rt_prio(p->prio))
1937        return p->normal_prio;
1938    return p->prio;
1939}
1940
1941/*
1942 * activate_task - move a task to the runqueue.
1943 */
1944static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1945{
1946    if (task_contributes_to_load(p))
1947        rq->nr_uninterruptible--;
1948
1949    enqueue_task(rq, p, wakeup);
1950    inc_nr_running(rq);
1951}
1952
1953/*
1954 * deactivate_task - remove a task from the runqueue.
1955 */
1956static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1957{
1958    if (task_contributes_to_load(p))
1959        rq->nr_uninterruptible++;
1960
1961    dequeue_task(rq, p, sleep);
1962    dec_nr_running(rq);
1963}
1964
1965/**
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1968 */
1969inline int task_curr(const struct task_struct *p)
1970{
1971    return cpu_curr(task_cpu(p)) == p;
1972}
1973
1974static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1975{
1976    set_task_rq(p, cpu);
1977#ifdef CONFIG_SMP
1978    /*
1979     * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1980     * successfuly executed on another CPU. We must ensure that updates of
1981     * per-task data have been completed by this moment.
1982     */
1983    smp_wmb();
1984    task_thread_info(p)->cpu = cpu;
1985#endif
1986}
1987
1988static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1989                       const struct sched_class *prev_class,
1990                       int oldprio, int running)
1991{
1992    if (prev_class != p->sched_class) {
1993        if (prev_class->switched_from)
1994            prev_class->switched_from(rq, p, running);
1995        p->sched_class->switched_to(rq, p, running);
1996    } else
1997        p->sched_class->prio_changed(rq, p, oldprio, running);
1998}
1999
2000/**
2001 * kthread_bind - bind a just-created kthread to a cpu.
2002 * @p: thread created by kthread_create().
2003 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2004 *
2005 * Description: This function is equivalent to set_cpus_allowed(),
2006 * except that @cpu doesn't need to be online, and the thread must be
2007 * stopped (i.e., just returned from kthread_create()).
2008 *
2009 * Function lives here instead of kthread.c because it messes with
2010 * scheduler internals which require locking.
2011 */
2012void kthread_bind(struct task_struct *p, unsigned int cpu)
2013{
2014    struct rq *rq = cpu_rq(cpu);
2015    unsigned long flags;
2016
2017    /* Must have done schedule() in kthread() before we set_task_cpu */
2018    if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2019        WARN_ON(1);
2020        return;
2021    }
2022
2023    spin_lock_irqsave(&rq->lock, flags);
2024    set_task_cpu(p, cpu);
2025    p->cpus_allowed = cpumask_of_cpu(cpu);
2026    p->rt.nr_cpus_allowed = 1;
2027    p->flags |= PF_THREAD_BOUND;
2028    spin_unlock_irqrestore(&rq->lock, flags);
2029}
2030EXPORT_SYMBOL(kthread_bind);
2031
2032#ifdef CONFIG_SMP
2033/*
2034 * Is this task likely cache-hot:
2035 */
2036static int
2037task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2038{
2039    s64 delta;
2040
2041    if (p->sched_class != &fair_sched_class)
2042        return 0;
2043
2044    /*
2045     * Buddy candidates are cache hot:
2046     */
2047    if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2048            (&p->se == cfs_rq_of(&p->se)->next ||
2049             &p->se == cfs_rq_of(&p->se)->last))
2050        return 1;
2051
2052    if (sysctl_sched_migration_cost == -1)
2053        return 1;
2054    if (sysctl_sched_migration_cost == 0)
2055        return 0;
2056
2057    delta = now - p->se.exec_start;
2058
2059    return delta < (s64)sysctl_sched_migration_cost;
2060}
2061
2062
2063void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2064{
2065    int old_cpu = task_cpu(p);
2066    struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2067    struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068              *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2069    u64 clock_offset;
2070
2071    clock_offset = old_rq->clock - new_rq->clock;
2072
2073    trace_sched_migrate_task(p, new_cpu);
2074
2075#ifdef CONFIG_SCHEDSTATS
2076    if (p->se.wait_start)
2077        p->se.wait_start -= clock_offset;
2078    if (p->se.sleep_start)
2079        p->se.sleep_start -= clock_offset;
2080    if (p->se.block_start)
2081        p->se.block_start -= clock_offset;
2082#endif
2083    if (old_cpu != new_cpu) {
2084        p->se.nr_migrations++;
2085        new_rq->nr_migrations_in++;
2086#ifdef CONFIG_SCHEDSTATS
2087        if (task_hot(p, old_rq->clock, NULL))
2088            schedstat_inc(p, se.nr_forced2_migrations);
2089#endif
2090        perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2091                     1, 1, NULL, 0);
2092    }
2093    p->se.vruntime -= old_cfsrq->min_vruntime -
2094                     new_cfsrq->min_vruntime;
2095
2096    __set_task_cpu(p, new_cpu);
2097}
2098
2099struct migration_req {
2100    struct list_head list;
2101
2102    struct task_struct *task;
2103    int dest_cpu;
2104
2105    struct completion done;
2106};
2107
2108/*
2109 * The task's runqueue lock must be held.
2110 * Returns true if you have to wait for migration thread.
2111 */
2112static int
2113migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2114{
2115    struct rq *rq = task_rq(p);
2116
2117    /*
2118     * If the task is not on a runqueue (and not running), then
2119     * it is sufficient to simply update the task's cpu field.
2120     */
2121    if (!p->se.on_rq && !task_running(rq, p)) {
2122        set_task_cpu(p, dest_cpu);
2123        return 0;
2124    }
2125
2126    init_completion(&req->done);
2127    req->task = p;
2128    req->dest_cpu = dest_cpu;
2129    list_add(&req->list, &rq->migration_queue);
2130
2131    return 1;
2132}
2133
2134/*
2135 * wait_task_context_switch - wait for a thread to complete at least one
2136 * context switch.
2137 *
2138 * @p must not be current.
2139 */
2140void wait_task_context_switch(struct task_struct *p)
2141{
2142    unsigned long nvcsw, nivcsw, flags;
2143    int running;
2144    struct rq *rq;
2145
2146    nvcsw = p->nvcsw;
2147    nivcsw = p->nivcsw;
2148    for (;;) {
2149        /*
2150         * The runqueue is assigned before the actual context
2151         * switch. We need to take the runqueue lock.
2152         *
2153         * We could check initially without the lock but it is
2154         * very likely that we need to take the lock in every
2155         * iteration.
2156         */
2157        rq = task_rq_lock(p, &flags);
2158        running = task_running(rq, p);
2159        task_rq_unlock(rq, &flags);
2160
2161        if (likely(!running))
2162            break;
2163        /*
2164         * The switch count is incremented before the actual
2165         * context switch. We thus wait for two switches to be
2166         * sure at least one completed.
2167         */
2168        if ((p->nvcsw - nvcsw) > 1)
2169            break;
2170        if ((p->nivcsw - nivcsw) > 1)
2171            break;
2172
2173        cpu_relax();
2174    }
2175}
2176
2177/*
2178 * wait_task_inactive - wait for a thread to unschedule.
2179 *
2180 * If @match_state is nonzero, it's the @p->state value just checked and
2181 * not expected to change. If it changes, i.e. @p might have woken up,
2182 * then return zero. When we succeed in waiting for @p to be off its CPU,
2183 * we return a positive number (its total switch count). If a second call
2184 * a short while later returns the same number, the caller can be sure that
2185 * @p has remained unscheduled the whole time.
2186 *
2187 * The caller must ensure that the task *will* unschedule sometime soon,
2188 * else this function might spin for a *long* time. This function can't
2189 * be called with interrupts off, or it may introduce deadlock with
2190 * smp_call_function() if an IPI is sent by the same process we are
2191 * waiting to become inactive.
2192 */
2193unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2194{
2195    unsigned long flags;
2196    int running, on_rq;
2197    unsigned long ncsw;
2198    struct rq *rq;
2199
2200    for (;;) {
2201        /*
2202         * We do the initial early heuristics without holding
2203         * any task-queue locks at all. We'll only try to get
2204         * the runqueue lock when things look like they will
2205         * work out!
2206         */
2207        rq = task_rq(p);
2208
2209        /*
2210         * If the task is actively running on another CPU
2211         * still, just relax and busy-wait without holding
2212         * any locks.
2213         *
2214         * NOTE! Since we don't hold any locks, it's not
2215         * even sure that "rq" stays as the right runqueue!
2216         * But we don't care, since "task_running()" will
2217         * return false if the runqueue has changed and p
2218         * is actually now running somewhere else!
2219         */
2220        while (task_running(rq, p)) {
2221            if (match_state && unlikely(p->state != match_state))
2222                return 0;
2223            cpu_relax();
2224        }
2225
2226        /*
2227         * Ok, time to look more closely! We need the rq
2228         * lock now, to be *sure*. If we're wrong, we'll
2229         * just go back and repeat.
2230         */
2231        rq = task_rq_lock(p, &flags);
2232        trace_sched_wait_task(rq, p);
2233        running = task_running(rq, p);
2234        on_rq = p->se.on_rq;
2235        ncsw = 0;
2236        if (!match_state || p->state == match_state)
2237            ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2238        task_rq_unlock(rq, &flags);
2239
2240        /*
2241         * If it changed from the expected state, bail out now.
2242         */
2243        if (unlikely(!ncsw))
2244            break;
2245
2246        /*
2247         * Was it really running after all now that we
2248         * checked with the proper locks actually held?
2249         *
2250         * Oops. Go back and try again..
2251         */
2252        if (unlikely(running)) {
2253            cpu_relax();
2254            continue;
2255        }
2256
2257        /*
2258         * It's not enough that it's not actively running,
2259         * it must be off the runqueue _entirely_, and not
2260         * preempted!
2261         *
2262         * So if it was still runnable (but just not actively
2263         * running right now), it's preempted, and we should
2264         * yield - it could be a while.
2265         */
2266        if (unlikely(on_rq)) {
2267            schedule_timeout_uninterruptible(1);
2268            continue;
2269        }
2270
2271        /*
2272         * Ahh, all good. It wasn't running, and it wasn't
2273         * runnable, which means that it will never become
2274         * running in the future either. We're all done!
2275         */
2276        break;
2277    }
2278
2279    return ncsw;
2280}
2281
2282/***
2283 * kick_process - kick a running thread to enter/exit the kernel
2284 * @p: the to-be-kicked thread
2285 *
2286 * Cause a process which is running on another CPU to enter
2287 * kernel-mode, without any delay. (to get signals handled.)
2288 *
2289 * NOTE: this function doesnt have to take the runqueue lock,
2290 * because all it wants to ensure is that the remote task enters
2291 * the kernel. If the IPI races and the task has been migrated
2292 * to another CPU then no harm is done and the purpose has been
2293 * achieved as well.
2294 */
2295void kick_process(struct task_struct *p)
2296{
2297    int cpu;
2298
2299    preempt_disable();
2300    cpu = task_cpu(p);
2301    if ((cpu != smp_processor_id()) && task_curr(p))
2302        smp_send_reschedule(cpu);
2303    preempt_enable();
2304}
2305EXPORT_SYMBOL_GPL(kick_process);
2306#endif /* CONFIG_SMP */
2307
2308/**
2309 * task_oncpu_function_call - call a function on the cpu on which a task runs
2310 * @p: the task to evaluate
2311 * @func: the function to be called
2312 * @info: the function call argument
2313 *
2314 * Calls the function @func when the task is currently running. This might
2315 * be on the current CPU, which just calls the function directly
2316 */
2317void task_oncpu_function_call(struct task_struct *p,
2318                  void (*func) (void *info), void *info)
2319{
2320    int cpu;
2321
2322    preempt_disable();
2323    cpu = task_cpu(p);
2324    if (task_curr(p))
2325        smp_call_function_single(cpu, func, info, 1);
2326    preempt_enable();
2327}
2328
2329/***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * returns failure only if the task is already active.
2342 */
2343static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344              int wake_flags)
2345{
2346    int cpu, orig_cpu, this_cpu, success = 0;
2347    unsigned long flags;
2348    struct rq *rq, *orig_rq;
2349
2350    if (!sched_feat(SYNC_WAKEUPS))
2351        wake_flags &= ~WF_SYNC;
2352
2353    this_cpu = get_cpu();
2354
2355    smp_wmb();
2356    rq = orig_rq = task_rq_lock(p, &flags);
2357    update_rq_clock(rq);
2358    if (!(p->state & state))
2359        goto out;
2360
2361    if (p->se.on_rq)
2362        goto out_running;
2363
2364    cpu = task_cpu(p);
2365    orig_cpu = cpu;
2366
2367#ifdef CONFIG_SMP
2368    if (unlikely(task_running(rq, p)))
2369        goto out_activate;
2370
2371    /*
2372     * In order to handle concurrent wakeups and release the rq->lock
2373     * we put the task in TASK_WAKING state.
2374     *
2375     * First fix up the nr_uninterruptible count:
2376     */
2377    if (task_contributes_to_load(p))
2378        rq->nr_uninterruptible--;
2379    p->state = TASK_WAKING;
2380    task_rq_unlock(rq, &flags);
2381
2382    cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2383    if (cpu != orig_cpu)
2384        set_task_cpu(p, cpu);
2385
2386    rq = task_rq_lock(p, &flags);
2387
2388    if (rq != orig_rq)
2389        update_rq_clock(rq);
2390
2391    WARN_ON(p->state != TASK_WAKING);
2392    cpu = task_cpu(p);
2393
2394#ifdef CONFIG_SCHEDSTATS
2395    schedstat_inc(rq, ttwu_count);
2396    if (cpu == this_cpu)
2397        schedstat_inc(rq, ttwu_local);
2398    else {
2399        struct sched_domain *sd;
2400        for_each_domain(this_cpu, sd) {
2401            if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2402                schedstat_inc(sd, ttwu_wake_remote);
2403                break;
2404            }
2405        }
2406    }
2407#endif /* CONFIG_SCHEDSTATS */
2408
2409out_activate:
2410#endif /* CONFIG_SMP */
2411    schedstat_inc(p, se.nr_wakeups);
2412    if (wake_flags & WF_SYNC)
2413        schedstat_inc(p, se.nr_wakeups_sync);
2414    if (orig_cpu != cpu)
2415        schedstat_inc(p, se.nr_wakeups_migrate);
2416    if (cpu == this_cpu)
2417        schedstat_inc(p, se.nr_wakeups_local);
2418    else
2419        schedstat_inc(p, se.nr_wakeups_remote);
2420    activate_task(rq, p, 1);
2421    success = 1;
2422
2423    /*
2424     * Only attribute actual wakeups done by this task.
2425     */
2426    if (!in_interrupt()) {
2427        struct sched_entity *se = &current->se;
2428        u64 sample = se->sum_exec_runtime;
2429
2430        if (se->last_wakeup)
2431            sample -= se->last_wakeup;
2432        else
2433            sample -= se->start_runtime;
2434        update_avg(&se->avg_wakeup, sample);
2435
2436        se->last_wakeup = se->sum_exec_runtime;
2437    }
2438
2439out_running:
2440    trace_sched_wakeup(rq, p, success);
2441    check_preempt_curr(rq, p, wake_flags);
2442
2443    p->state = TASK_RUNNING;
2444#ifdef CONFIG_SMP
2445    if (p->sched_class->task_wake_up)
2446        p->sched_class->task_wake_up(rq, p);
2447
2448    if (unlikely(rq->idle_stamp)) {
2449        u64 delta = rq->clock - rq->idle_stamp;
2450        u64 max = 2*sysctl_sched_migration_cost;
2451
2452        if (delta > max)
2453            rq->avg_idle = max;
2454        else
2455            update_avg(&rq->avg_idle, delta);
2456        rq->idle_stamp = 0;
2457    }
2458#endif
2459out:
2460    task_rq_unlock(rq, &flags);
2461    put_cpu();
2462
2463    return success;
2464}
2465
2466/**
2467 * wake_up_process - Wake up a specific process
2468 * @p: The process to be woken up.
2469 *
2470 * Attempt to wake up the nominated process and move it to the set of runnable
2471 * processes. Returns 1 if the process was woken up, 0 if it was already
2472 * running.
2473 *
2474 * It may be assumed that this function implies a write memory barrier before
2475 * changing the task state if and only if any tasks are woken up.
2476 */
2477int wake_up_process(struct task_struct *p)
2478{
2479    return try_to_wake_up(p, TASK_ALL, 0);
2480}
2481EXPORT_SYMBOL(wake_up_process);
2482
2483int wake_up_state(struct task_struct *p, unsigned int state)
2484{
2485    return try_to_wake_up(p, state, 0);
2486}
2487
2488/*
2489 * Perform scheduler related setup for a newly forked process p.
2490 * p is forked by current.
2491 *
2492 * __sched_fork() is basic setup used by init_idle() too:
2493 */
2494static void __sched_fork(struct task_struct *p)
2495{
2496    p->se.exec_start = 0;
2497    p->se.sum_exec_runtime = 0;
2498    p->se.prev_sum_exec_runtime = 0;
2499    p->se.nr_migrations = 0;
2500    p->se.last_wakeup = 0;
2501    p->se.avg_overlap = 0;
2502    p->se.start_runtime = 0;
2503    p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2504    p->se.avg_running = 0;
2505
2506#ifdef CONFIG_SCHEDSTATS
2507    p->se.wait_start = 0;
2508    p->se.wait_max = 0;
2509    p->se.wait_count = 0;
2510    p->se.wait_sum = 0;
2511
2512    p->se.sleep_start = 0;
2513    p->se.sleep_max = 0;
2514    p->se.sum_sleep_runtime = 0;
2515
2516    p->se.block_start = 0;
2517    p->se.block_max = 0;
2518    p->se.exec_max = 0;
2519    p->se.slice_max = 0;
2520
2521    p->se.nr_migrations_cold = 0;
2522    p->se.nr_failed_migrations_affine = 0;
2523    p->se.nr_failed_migrations_running = 0;
2524    p->se.nr_failed_migrations_hot = 0;
2525    p->se.nr_forced_migrations = 0;
2526    p->se.nr_forced2_migrations = 0;
2527
2528    p->se.nr_wakeups = 0;
2529    p->se.nr_wakeups_sync = 0;
2530    p->se.nr_wakeups_migrate = 0;
2531    p->se.nr_wakeups_local = 0;
2532    p->se.nr_wakeups_remote = 0;
2533    p->se.nr_wakeups_affine = 0;
2534    p->se.nr_wakeups_affine_attempts = 0;
2535    p->se.nr_wakeups_passive = 0;
2536    p->se.nr_wakeups_idle = 0;
2537
2538#endif
2539
2540    INIT_LIST_HEAD(&p->rt.run_list);
2541    p->se.on_rq = 0;
2542    INIT_LIST_HEAD(&p->se.group_node);
2543
2544#ifdef CONFIG_PREEMPT_NOTIFIERS
2545    INIT_HLIST_HEAD(&p->preempt_notifiers);
2546#endif
2547
2548    /*
2549     * We mark the process as running here, but have not actually
2550     * inserted it onto the runqueue yet. This guarantees that
2551     * nobody will actually run it, and a signal or other external
2552     * event cannot wake it up and insert it on the runqueue either.
2553     */
2554    p->state = TASK_RUNNING;
2555}
2556
2557/*
2558 * fork()/clone()-time setup:
2559 */
2560void sched_fork(struct task_struct *p, int clone_flags)
2561{
2562    int cpu = get_cpu();
2563
2564    __sched_fork(p);
2565
2566    /*
2567     * Revert to default priority/policy on fork if requested.
2568     */
2569    if (unlikely(p->sched_reset_on_fork)) {
2570        if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2571            p->policy = SCHED_NORMAL;
2572            p->normal_prio = p->static_prio;
2573        }
2574
2575        if (PRIO_TO_NICE(p->static_prio) < 0) {
2576            p->static_prio = NICE_TO_PRIO(0);
2577            p->normal_prio = p->static_prio;
2578            set_load_weight(p);
2579        }
2580
2581        /*
2582         * We don't need the reset flag anymore after the fork. It has
2583         * fulfilled its duty:
2584         */
2585        p->sched_reset_on_fork = 0;
2586    }
2587
2588    /*
2589     * Make sure we do not leak PI boosting priority to the child.
2590     */
2591    p->prio = current->normal_prio;
2592
2593    if (!rt_prio(p->prio))
2594        p->sched_class = &fair_sched_class;
2595
2596#ifdef CONFIG_SMP
2597    cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2598#endif
2599    set_task_cpu(p, cpu);
2600
2601#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2602    if (likely(sched_info_on()))
2603        memset(&p->sched_info, 0, sizeof(p->sched_info));
2604#endif
2605#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606    p->oncpu = 0;
2607#endif
2608#ifdef CONFIG_PREEMPT
2609    /* Want to start with kernel preemption disabled. */
2610    task_thread_info(p)->preempt_count = 1;
2611#endif
2612    plist_node_init(&p->pushable_tasks, MAX_PRIO);
2613
2614    put_cpu();
2615}
2616
2617/*
2618 * wake_up_new_task - wake up a newly created task for the first time.
2619 *
2620 * This function will do some initial scheduler statistics housekeeping
2621 * that must be done for every newly created context, then puts the task
2622 * on the runqueue and wakes it.
2623 */
2624void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2625{
2626    unsigned long flags;
2627    struct rq *rq;
2628
2629    rq = task_rq_lock(p, &flags);
2630    BUG_ON(p->state != TASK_RUNNING);
2631    update_rq_clock(rq);
2632
2633    if (!p->sched_class->task_new || !current->se.on_rq) {
2634        activate_task(rq, p, 0);
2635    } else {
2636        /*
2637         * Let the scheduling class do new task startup
2638         * management (if any):
2639         */
2640        p->sched_class->task_new(rq, p);
2641        inc_nr_running(rq);
2642    }
2643    trace_sched_wakeup_new(rq, p, 1);
2644    check_preempt_curr(rq, p, WF_FORK);
2645#ifdef CONFIG_SMP
2646    if (p->sched_class->task_wake_up)
2647        p->sched_class->task_wake_up(rq, p);
2648#endif
2649    task_rq_unlock(rq, &flags);
2650}
2651
2652#ifdef CONFIG_PREEMPT_NOTIFIERS
2653
2654/**
2655 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2656 * @notifier: notifier struct to register
2657 */
2658void preempt_notifier_register(struct preempt_notifier *notifier)
2659{
2660    hlist_add_head(&notifier->link, &current->preempt_notifiers);
2661}
2662EXPORT_SYMBOL_GPL(preempt_notifier_register);
2663
2664/**
2665 * preempt_notifier_unregister - no longer interested in preemption notifications
2666 * @notifier: notifier struct to unregister
2667 *
2668 * This is safe to call from within a preemption notifier.
2669 */
2670void preempt_notifier_unregister(struct preempt_notifier *notifier)
2671{
2672    hlist_del(&notifier->link);
2673}
2674EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2675
2676static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2677{
2678    struct preempt_notifier *notifier;
2679    struct hlist_node *node;
2680
2681    hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2682        notifier->ops->sched_in(notifier, raw_smp_processor_id());
2683}
2684
2685static void
2686fire_sched_out_preempt_notifiers(struct task_struct *curr,
2687                 struct task_struct *next)
2688{
2689    struct preempt_notifier *notifier;
2690    struct hlist_node *node;
2691
2692    hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2693        notifier->ops->sched_out(notifier, next);
2694}
2695
2696#else /* !CONFIG_PREEMPT_NOTIFIERS */
2697
2698static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2699{
2700}
2701
2702static void
2703fire_sched_out_preempt_notifiers(struct task_struct *curr,
2704                 struct task_struct *next)
2705{
2706}
2707
2708#endif /* CONFIG_PREEMPT_NOTIFIERS */
2709
2710/**
2711 * prepare_task_switch - prepare to switch tasks
2712 * @rq: the runqueue preparing to switch
2713 * @prev: the current task that is being switched out
2714 * @next: the task we are going to switch to.
2715 *
2716 * This is called with the rq lock held and interrupts off. It must
2717 * be paired with a subsequent finish_task_switch after the context
2718 * switch.
2719 *
2720 * prepare_task_switch sets up locking and calls architecture specific
2721 * hooks.
2722 */
2723static inline void
2724prepare_task_switch(struct rq *rq, struct task_struct *prev,
2725            struct task_struct *next)
2726{
2727    fire_sched_out_preempt_notifiers(prev, next);
2728    prepare_lock_switch(rq, next);
2729    prepare_arch_switch(next);
2730}
2731
2732/**
2733 * finish_task_switch - clean up after a task-switch
2734 * @rq: runqueue associated with task-switch
2735 * @prev: the thread we just switched away from.
2736 *
2737 * finish_task_switch must be called after the context switch, paired
2738 * with a prepare_task_switch call before the context switch.
2739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2740 * and do any other architecture-specific cleanup actions.
2741 *
2742 * Note that we may have delayed dropping an mm in context_switch(). If
2743 * so, we finish that here outside of the runqueue lock. (Doing it
2744 * with the lock held can cause deadlocks; see schedule() for
2745 * details.)
2746 */
2747static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2748    __releases(rq->lock)
2749{
2750    struct mm_struct *mm = rq->prev_mm;
2751    long prev_state;
2752
2753    rq->prev_mm = NULL;
2754
2755    /*
2756     * A task struct has one reference for the use as "current".
2757     * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2758     * schedule one last time. The schedule call will never return, and
2759     * the scheduled task must drop that reference.
2760     * The test for TASK_DEAD must occur while the runqueue locks are
2761     * still held, otherwise prev could be scheduled on another cpu, die
2762     * there before we look at prev->state, and then the reference would
2763     * be dropped twice.
2764     * Manfred Spraul <manfred@colorfullife.com>
2765     */
2766    prev_state = prev->state;
2767    finish_arch_switch(prev);
2768    perf_event_task_sched_in(current, cpu_of(rq));
2769    finish_lock_switch(rq, prev);
2770
2771    fire_sched_in_preempt_notifiers(current);
2772    if (mm)
2773        mmdrop(mm);
2774    if (unlikely(prev_state == TASK_DEAD)) {
2775        /*
2776         * Remove function-return probe instances associated with this
2777         * task and put them back on the free list.
2778         */
2779        kprobe_flush_task(prev);
2780        put_task_struct(prev);
2781    }
2782}
2783
2784#ifdef CONFIG_SMP
2785
2786/* assumes rq->lock is held */
2787static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2788{
2789    if (prev->sched_class->pre_schedule)
2790        prev->sched_class->pre_schedule(rq, prev);
2791}
2792
2793/* rq->lock is NOT held, but preemption is disabled */
2794static inline void post_schedule(struct rq *rq)
2795{
2796    if (rq->post_schedule) {
2797        unsigned long flags;
2798
2799        spin_lock_irqsave(&rq->lock, flags);
2800        if (rq->curr->sched_class->post_schedule)
2801            rq->curr->sched_class->post_schedule(rq);
2802        spin_unlock_irqrestore(&rq->lock, flags);
2803
2804        rq->post_schedule = 0;
2805    }
2806}
2807
2808#else
2809
2810static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2811{
2812}
2813
2814static inline void post_schedule(struct rq *rq)
2815{
2816}
2817
2818#endif
2819
2820/**
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2823 */
2824asmlinkage void schedule_tail(struct task_struct *prev)
2825    __releases(rq->lock)
2826{
2827    struct rq *rq = this_rq();
2828
2829    finish_task_switch(rq, prev);
2830
2831    /*
2832     * FIXME: do we need to worry about rq being invalidated by the
2833     * task_switch?
2834     */
2835    post_schedule(rq);
2836
2837#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2838    /* In this case, finish_task_switch does not reenable preemption */
2839    preempt_enable();
2840#endif
2841    if (current->set_child_tid)
2842        put_user(task_pid_vnr(current), current->set_child_tid);
2843}
2844
2845/*
2846 * context_switch - switch to the new MM and the new
2847 * thread's register state.
2848 */
2849static inline void
2850context_switch(struct rq *rq, struct task_struct *prev,
2851           struct task_struct *next)
2852{
2853    struct mm_struct *mm, *oldmm;
2854
2855    prepare_task_switch(rq, prev, next);
2856    trace_sched_switch(rq, prev, next);
2857    mm = next->mm;
2858    oldmm = prev->active_mm;
2859    /*
2860     * For paravirt, this is coupled with an exit in switch_to to
2861     * combine the page table reload and the switch backend into
2862     * one hypercall.
2863     */
2864    arch_start_context_switch(prev);
2865
2866    if (unlikely(!mm)) {
2867        next->active_mm = oldmm;
2868        atomic_inc(&oldmm->mm_count);
2869        enter_lazy_tlb(oldmm, next);
2870    } else
2871        switch_mm(oldmm, mm, next);
2872
2873    if (unlikely(!prev->mm)) {
2874        prev->active_mm = NULL;
2875        rq->prev_mm = oldmm;
2876    }
2877    /*
2878     * Since the runqueue lock will be released by the next
2879     * task (which is an invalid locking op but in the case
2880     * of the scheduler it's an obvious special-case), so we
2881     * do an early lockdep release here:
2882     */
2883#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2884    spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2885#endif
2886
2887    /* Here we just switch the register state and the stack. */
2888    switch_to(prev, next, prev);
2889
2890    barrier();
2891    /*
2892     * this_rq must be evaluated again because prev may have moved
2893     * CPUs since it called schedule(), thus the 'rq' on its stack
2894     * frame will be invalid.
2895     */
2896    finish_task_switch(this_rq(), prev);
2897}
2898
2899/*
2900 * nr_running, nr_uninterruptible and nr_context_switches:
2901 *
2902 * externally visible scheduler statistics: current number of runnable
2903 * threads, current number of uninterruptible-sleeping threads, total
2904 * number of context switches performed since bootup.
2905 */
2906unsigned long nr_running(void)
2907{
2908    unsigned long i, sum = 0;
2909
2910    for_each_online_cpu(i)
2911        sum += cpu_rq(i)->nr_running;
2912
2913    return sum;
2914}
2915
2916unsigned long nr_uninterruptible(void)
2917{
2918    unsigned long i, sum = 0;
2919
2920    for_each_possible_cpu(i)
2921        sum += cpu_rq(i)->nr_uninterruptible;
2922
2923    /*
2924     * Since we read the counters lockless, it might be slightly
2925     * inaccurate. Do not allow it to go below zero though:
2926     */
2927    if (unlikely((long)sum < 0))
2928        sum = 0;
2929
2930    return sum;
2931}
2932
2933unsigned long long nr_context_switches(void)
2934{
2935    int i;
2936    unsigned long long sum = 0;
2937
2938    for_each_possible_cpu(i)
2939        sum += cpu_rq(i)->nr_switches;
2940
2941    return sum;
2942}
2943
2944unsigned long nr_iowait(void)
2945{
2946    unsigned long i, sum = 0;
2947
2948    for_each_possible_cpu(i)
2949        sum += atomic_read(&cpu_rq(i)->nr_iowait);
2950
2951    return sum;
2952}
2953
2954unsigned long nr_iowait_cpu(void)
2955{
2956    struct rq *this = this_rq();
2957    return atomic_read(&this->nr_iowait);
2958}
2959
2960unsigned long this_cpu_load(void)
2961{
2962    struct rq *this = this_rq();
2963    return this->cpu_load[0];
2964}
2965
2966
2967/* Variables and functions for calc_load */
2968static atomic_long_t calc_load_tasks;
2969static unsigned long calc_load_update;
2970unsigned long avenrun[3];
2971EXPORT_SYMBOL(avenrun);
2972
2973/**
2974 * get_avenrun - get the load average array
2975 * @loads: pointer to dest load array
2976 * @offset: offset to add
2977 * @shift: shift count to shift the result left
2978 *
2979 * These values are estimates at best, so no need for locking.
2980 */
2981void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2982{
2983    loads[0] = (avenrun[0] + offset) << shift;
2984    loads[1] = (avenrun[1] + offset) << shift;
2985    loads[2] = (avenrun[2] + offset) << shift;
2986}
2987
2988static unsigned long
2989calc_load(unsigned long load, unsigned long exp, unsigned long active)
2990{
2991    load *= exp;
2992    load += active * (FIXED_1 - exp);
2993    return load >> FSHIFT;
2994}
2995
2996/*
2997 * calc_load - update the avenrun load estimates 10 ticks after the
2998 * CPUs have updated calc_load_tasks.
2999 */
3000void calc_global_load(void)
3001{
3002    unsigned long upd = calc_load_update + 10;
3003    long active;
3004
3005    if (time_before(jiffies, upd))
3006        return;
3007
3008    active = atomic_long_read(&calc_load_tasks);
3009    active = active > 0 ? active * FIXED_1 : 0;
3010
3011    avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3012    avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3013    avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3014
3015    calc_load_update += LOAD_FREQ;
3016}
3017
3018/*
3019 * Either called from update_cpu_load() or from a cpu going idle
3020 */
3021static void calc_load_account_active(struct rq *this_rq)
3022{
3023    long nr_active, delta;
3024
3025    nr_active = this_rq->nr_running;
3026    nr_active += (long) this_rq->nr_uninterruptible;
3027
3028    if (nr_active != this_rq->calc_load_active) {
3029        delta = nr_active - this_rq->calc_load_active;
3030        this_rq->calc_load_active = nr_active;
3031        atomic_long_add(delta, &calc_load_tasks);
3032    }
3033}
3034
3035/*
3036 * Externally visible per-cpu scheduler statistics:
3037 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3038 */
3039u64 cpu_nr_migrations(int cpu)
3040{
3041    return cpu_rq(cpu)->nr_migrations_in;
3042}
3043
3044/*
3045 * Update rq->cpu_load[] statistics. This function is usually called every
3046 * scheduler tick (TICK_NSEC).
3047 */
3048static void update_cpu_load(struct rq *this_rq)
3049{
3050    unsigned long this_load = this_rq->load.weight;
3051    int i, scale;
3052
3053    this_rq->nr_load_updates++;
3054
3055    /* Update our load: */
3056    for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3057        unsigned long old_load, new_load;
3058
3059        /* scale is effectively 1 << i now, and >> i divides by scale */
3060
3061        old_load = this_rq->cpu_load[i];
3062        new_load = this_load;
3063        /*
3064         * Round up the averaging division if load is increasing. This
3065         * prevents us from getting stuck on 9 if the load is 10, for
3066         * example.
3067         */
3068        if (new_load > old_load)
3069            new_load += scale-1;
3070        this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3071    }
3072
3073    if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3074        this_rq->calc_load_update += LOAD_FREQ;
3075        calc_load_account_active(this_rq);
3076    }
3077}
3078
3079#ifdef CONFIG_SMP
3080
3081/*
3082 * double_rq_lock - safely lock two runqueues
3083 *
3084 * Note this does not disable interrupts like task_rq_lock,
3085 * you need to do so manually before calling.
3086 */
3087static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3088    __acquires(rq1->lock)
3089    __acquires(rq2->lock)
3090{
3091    BUG_ON(!irqs_disabled());
3092    if (rq1 == rq2) {
3093        spin_lock(&rq1->lock);
3094        __acquire(rq2->lock); /* Fake it out ;) */
3095    } else {
3096        if (rq1 < rq2) {
3097            spin_lock(&rq1->lock);
3098            spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3099        } else {
3100            spin_lock(&rq2->lock);
3101            spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3102        }
3103    }
3104    update_rq_clock(rq1);
3105    update_rq_clock(rq2);
3106}
3107
3108/*
3109 * double_rq_unlock - safely unlock two runqueues
3110 *
3111 * Note this does not restore interrupts like task_rq_unlock,
3112 * you need to do so manually after calling.
3113 */
3114static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3115    __releases(rq1->lock)
3116    __releases(rq2->lock)
3117{
3118    spin_unlock(&rq1->lock);
3119    if (rq1 != rq2)
3120        spin_unlock(&rq2->lock);
3121    else
3122        __release(rq2->lock);
3123}
3124
3125/*
3126 * If dest_cpu is allowed for this process, migrate the task to it.
3127 * This is accomplished by forcing the cpu_allowed mask to only
3128 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3129 * the cpu_allowed mask is restored.
3130 */
3131static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3132{
3133    struct migration_req req;
3134    unsigned long flags;
3135    struct rq *rq;
3136
3137    rq = task_rq_lock(p, &flags);
3138    if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3139        || unlikely(!cpu_active(dest_cpu)))
3140        goto out;
3141
3142    /* force the process onto the specified CPU */
3143    if (migrate_task(p, dest_cpu, &req)) {
3144        /* Need to wait for migration thread (might exit: take ref). */
3145        struct task_struct *mt = rq->migration_thread;
3146
3147        get_task_struct(mt);
3148        task_rq_unlock(rq, &flags);
3149        wake_up_process(mt);
3150        put_task_struct(mt);
3151        wait_for_completion(&req.done);
3152
3153        return;
3154    }
3155out:
3156    task_rq_unlock(rq, &flags);
3157}
3158
3159/*
3160 * sched_exec - execve() is a valuable balancing opportunity, because at
3161 * this point the task has the smallest effective memory and cache footprint.
3162 */
3163void sched_exec(void)
3164{
3165    int new_cpu, this_cpu = get_cpu();
3166    new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3167    put_cpu();
3168    if (new_cpu != this_cpu)
3169        sched_migrate_task(current, new_cpu);
3170}
3171
3172/*
3173 * pull_task - move a task from a remote runqueue to the local runqueue.
3174 * Both runqueues must be locked.
3175 */
3176static void pull_task(struct rq *src_rq, struct task_struct *p,
3177              struct rq *this_rq, int this_cpu)
3178{
3179    deactivate_task(src_rq, p, 0);
3180    set_task_cpu(p, this_cpu);
3181    activate_task(this_rq, p, 0);
3182    check_preempt_curr(this_rq, p, 0);
3183}
3184
3185/*
3186 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3187 */
3188static
3189int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3190             struct sched_domain *sd, enum cpu_idle_type idle,
3191             int *all_pinned)
3192{
3193    int tsk_cache_hot = 0;
3194    /*
3195     * We do not migrate tasks that are:
3196     * 1) running (obviously), or
3197     * 2) cannot be migrated to this CPU due to cpus_allowed, or
3198     * 3) are cache-hot on their current CPU.
3199     */
3200    if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3201        schedstat_inc(p, se.nr_failed_migrations_affine);
3202        return 0;
3203    }
3204    *all_pinned = 0;
3205
3206    if (task_running(rq, p)) {
3207        schedstat_inc(p, se.nr_failed_migrations_running);
3208        return 0;
3209    }
3210
3211    /*
3212     * Aggressive migration if:
3213     * 1) task is cache cold, or
3214     * 2) too many balance attempts have failed.
3215     */
3216
3217    tsk_cache_hot = task_hot(p, rq->clock, sd);
3218    if (!tsk_cache_hot ||
3219        sd->nr_balance_failed > sd->cache_nice_tries) {
3220#ifdef CONFIG_SCHEDSTATS
3221        if (tsk_cache_hot) {
3222            schedstat_inc(sd, lb_hot_gained[idle]);
3223            schedstat_inc(p, se.nr_forced_migrations);
3224        }
3225#endif
3226        return 1;
3227    }
3228
3229    if (tsk_cache_hot) {
3230        schedstat_inc(p, se.nr_failed_migrations_hot);
3231        return 0;
3232    }
3233    return 1;
3234}
3235
3236static unsigned long
3237balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3238          unsigned long max_load_move, struct sched_domain *sd,
3239          enum cpu_idle_type idle, int *all_pinned,
3240          int *this_best_prio, struct rq_iterator *iterator)
3241{
3242    int loops = 0, pulled = 0, pinned = 0;
3243    struct task_struct *p;
3244    long rem_load_move = max_load_move;
3245
3246    if (max_load_move == 0)
3247        goto out;
3248
3249    pinned = 1;
3250
3251    /*
3252     * Start the load-balancing iterator:
3253     */
3254    p = iterator->start(iterator->arg);
3255next:
3256    if (!p || loops++ > sysctl_sched_nr_migrate)
3257        goto out;
3258
3259    if ((p->se.load.weight >> 1) > rem_load_move ||
3260        !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3261        p = iterator->next(iterator->arg);
3262        goto next;
3263    }
3264
3265    pull_task(busiest, p, this_rq, this_cpu);
3266    pulled++;
3267    rem_load_move -= p->se.load.weight;
3268
3269#ifdef CONFIG_PREEMPT
3270    /*
3271     * NEWIDLE balancing is a source of latency, so preemptible kernels
3272     * will stop after the first task is pulled to minimize the critical
3273     * section.
3274     */
3275    if (idle == CPU_NEWLY_IDLE)
3276        goto out;
3277#endif
3278
3279    /*
3280     * We only want to steal up to the prescribed amount of weighted load.
3281     */
3282    if (rem_load_move > 0) {
3283        if (p->prio < *this_best_prio)
3284            *this_best_prio = p->prio;
3285        p = iterator->next(iterator->arg);
3286        goto next;
3287    }
3288out:
3289    /*
3290     * Right now, this is one of only two places pull_task() is called,
3291     * so we can safely collect pull_task() stats here rather than
3292     * inside pull_task().
3293     */
3294    schedstat_add(sd, lb_gained[idle], pulled);
3295
3296    if (all_pinned)
3297        *all_pinned = pinned;
3298
3299    return max_load_move - rem_load_move;
3300}
3301
3302/*
3303 * move_tasks tries to move up to max_load_move weighted load from busiest to
3304 * this_rq, as part of a balancing operation within domain "sd".
3305 * Returns 1 if successful and 0 otherwise.
3306 *
3307 * Called with both runqueues locked.
3308 */
3309static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3310              unsigned long max_load_move,
3311              struct sched_domain *sd, enum cpu_idle_type idle,
3312              int *all_pinned)
3313{
3314    const struct sched_class *class = sched_class_highest;
3315    unsigned long total_load_moved = 0;
3316    int this_best_prio = this_rq->curr->prio;
3317
3318    do {
3319        total_load_moved +=
3320            class->load_balance(this_rq, this_cpu, busiest,
3321                max_load_move - total_load_moved,
3322                sd, idle, all_pinned, &this_best_prio);
3323        class = class->next;
3324
3325#ifdef CONFIG_PREEMPT
3326        /*
3327         * NEWIDLE balancing is a source of latency, so preemptible
3328         * kernels will stop after the first task is pulled to minimize
3329         * the critical section.
3330         */
3331        if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3332            break;
3333#endif
3334    } while (class && max_load_move > total_load_moved);
3335
3336    return total_load_moved > 0;
3337}
3338
3339static int
3340iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3341           struct sched_domain *sd, enum cpu_idle_type idle,
3342           struct rq_iterator *iterator)
3343{
3344    struct task_struct *p = iterator->start(iterator->arg);
3345    int pinned = 0;
3346
3347    while (p) {
3348        if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3349            pull_task(busiest, p, this_rq, this_cpu);
3350            /*
3351             * Right now, this is only the second place pull_task()
3352             * is called, so we can safely collect pull_task()
3353             * stats here rather than inside pull_task().
3354             */
3355            schedstat_inc(sd, lb_gained[idle]);
3356
3357            return 1;
3358        }
3359        p = iterator->next(iterator->arg);
3360    }
3361
3362    return 0;
3363}
3364
3365/*
3366 * move_one_task tries to move exactly one task from busiest to this_rq, as
3367 * part of active balancing operations within "domain".
3368 * Returns 1 if successful and 0 otherwise.
3369 *
3370 * Called with both runqueues locked.
3371 */
3372static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3373             struct sched_domain *sd, enum cpu_idle_type idle)
3374{
3375    const struct sched_class *class;
3376
3377    for_each_class(class) {
3378        if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3379            return 1;
3380    }
3381
3382    return 0;
3383}
3384/********** Helpers for find_busiest_group ************************/
3385/*
3386 * sd_lb_stats - Structure to store the statistics of a sched_domain
3387 * during load balancing.
3388 */
3389struct sd_lb_stats {
3390    struct sched_group *busiest; /* Busiest group in this sd */
3391    struct sched_group *this; /* Local group in this sd */
3392    unsigned long total_load; /* Total load of all groups in sd */
3393    unsigned long total_pwr; /* Total power of all groups in sd */
3394    unsigned long avg_load; /* Average load across all groups in sd */
3395
3396    /** Statistics of this group */
3397    unsigned long this_load;
3398    unsigned long this_load_per_task;
3399    unsigned long this_nr_running;
3400
3401    /* Statistics of the busiest group */
3402    unsigned long max_load;
3403    unsigned long busiest_load_per_task;
3404    unsigned long busiest_nr_running;
3405
3406    int group_imb; /* Is there imbalance in this sd */
3407#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3408    int power_savings_balance; /* Is powersave balance needed for this sd */
3409    struct sched_group *group_min; /* Least loaded group in sd */
3410    struct sched_group *group_leader; /* Group which relieves group_min */
3411    unsigned long min_load_per_task; /* load_per_task in group_min */
3412    unsigned long leader_nr_running; /* Nr running of group_leader */
3413    unsigned long min_nr_running; /* Nr running of group_min */
3414#endif
3415};
3416
3417/*
3418 * sg_lb_stats - stats of a sched_group required for load_balancing
3419 */
3420struct sg_lb_stats {
3421    unsigned long avg_load; /*Avg load across the CPUs of the group */
3422    unsigned long group_load; /* Total load over the CPUs of the group */
3423    unsigned long sum_nr_running; /* Nr tasks running in the group */
3424    unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3425    unsigned long group_capacity;
3426    int group_imb; /* Is there an imbalance in the group ? */
3427};
3428
3429/**
3430 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3431 * @group: The group whose first cpu is to be returned.
3432 */
3433static inline unsigned int group_first_cpu(struct sched_group *group)
3434{
3435    return cpumask_first(sched_group_cpus(group));
3436}
3437
3438/**
3439 * get_sd_load_idx - Obtain the load index for a given sched domain.
3440 * @sd: The sched_domain whose load_idx is to be obtained.
3441 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3442 */
3443static inline int get_sd_load_idx(struct sched_domain *sd,
3444                    enum cpu_idle_type idle)
3445{
3446    int load_idx;
3447
3448    switch (idle) {
3449    case CPU_NOT_IDLE:
3450        load_idx = sd->busy_idx;
3451        break;
3452
3453    case CPU_NEWLY_IDLE:
3454        load_idx = sd->newidle_idx;
3455        break;
3456    default:
3457        load_idx = sd->idle_idx;
3458        break;
3459    }
3460
3461    return load_idx;
3462}
3463
3464
3465#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3466/**
3467 * init_sd_power_savings_stats - Initialize power savings statistics for
3468 * the given sched_domain, during load balancing.
3469 *
3470 * @sd: Sched domain whose power-savings statistics are to be initialized.
3471 * @sds: Variable containing the statistics for sd.
3472 * @idle: Idle status of the CPU at which we're performing load-balancing.
3473 */
3474static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3475    struct sd_lb_stats *sds, enum cpu_idle_type idle)
3476{
3477    /*
3478     * Busy processors will not participate in power savings
3479     * balance.
3480     */
3481    if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3482        sds->power_savings_balance = 0;
3483    else {
3484        sds->power_savings_balance = 1;
3485        sds->min_nr_running = ULONG_MAX;
3486        sds->leader_nr_running = 0;
3487    }
3488}
3489
3490/**
3491 * update_sd_power_savings_stats - Update the power saving stats for a
3492 * sched_domain while performing load balancing.
3493 *
3494 * @group: sched_group belonging to the sched_domain under consideration.
3495 * @sds: Variable containing the statistics of the sched_domain
3496 * @local_group: Does group contain the CPU for which we're performing
3497 * load balancing ?
3498 * @sgs: Variable containing the statistics of the group.
3499 */
3500static inline void update_sd_power_savings_stats(struct sched_group *group,
3501    struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3502{
3503
3504    if (!sds->power_savings_balance)
3505        return;
3506
3507    /*
3508     * If the local group is idle or completely loaded
3509     * no need to do power savings balance at this domain
3510     */
3511    if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3512                !sds->this_nr_running))
3513        sds->power_savings_balance = 0;
3514
3515    /*
3516     * If a group is already running at full capacity or idle,
3517     * don't include that group in power savings calculations
3518     */
3519    if (!sds->power_savings_balance ||
3520        sgs->sum_nr_running >= sgs->group_capacity ||
3521        !sgs->sum_nr_running)
3522        return;
3523
3524    /*
3525     * Calculate the group which has the least non-idle load.
3526     * This is the group from where we need to pick up the load
3527     * for saving power
3528     */
3529    if ((sgs->sum_nr_running < sds->min_nr_running) ||
3530        (sgs->sum_nr_running == sds->min_nr_running &&
3531         group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3532        sds->group_min = group;
3533        sds->min_nr_running = sgs->sum_nr_running;
3534        sds->min_load_per_task = sgs->sum_weighted_load /
3535                        sgs->sum_nr_running;
3536    }
3537
3538    /*
3539     * Calculate the group which is almost near its
3540     * capacity but still has some space to pick up some load
3541     * from other group and save more power
3542     */
3543    if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3544        return;
3545
3546    if (sgs->sum_nr_running > sds->leader_nr_running ||
3547        (sgs->sum_nr_running == sds->leader_nr_running &&
3548         group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3549        sds->group_leader = group;
3550        sds->leader_nr_running = sgs->sum_nr_running;
3551    }
3552}
3553
3554/**
3555 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3556 * @sds: Variable containing the statistics of the sched_domain
3557 * under consideration.
3558 * @this_cpu: Cpu at which we're currently performing load-balancing.
3559 * @imbalance: Variable to store the imbalance.
3560 *
3561 * Description:
3562 * Check if we have potential to perform some power-savings balance.
3563 * If yes, set the busiest group to be the least loaded group in the
3564 * sched_domain, so that it's CPUs can be put to idle.
3565 *
3566 * Returns 1 if there is potential to perform power-savings balance.
3567 * Else returns 0.
3568 */
3569static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3570                    int this_cpu, unsigned long *imbalance)
3571{
3572    if (!sds->power_savings_balance)
3573        return 0;
3574
3575    if (sds->this != sds->group_leader ||
3576            sds->group_leader == sds->group_min)
3577        return 0;
3578
3579    *imbalance = sds->min_load_per_task;
3580    sds->busiest = sds->group_min;
3581
3582    return 1;
3583
3584}
3585#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3586static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3587    struct sd_lb_stats *sds, enum cpu_idle_type idle)
3588{
3589    return;
3590}
3591
3592static inline void update_sd_power_savings_stats(struct sched_group *group,
3593    struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3594{
3595    return;
3596}
3597
3598static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3599                    int this_cpu, unsigned long *imbalance)
3600{
3601    return 0;
3602}
3603#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3604
3605
3606unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3607{
3608    return SCHED_LOAD_SCALE;
3609}
3610
3611unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3612{
3613    return default_scale_freq_power(sd, cpu);
3614}
3615
3616unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3617{
3618    unsigned long weight = cpumask_weight(sched_domain_span(sd));
3619    unsigned long smt_gain = sd->smt_gain;
3620
3621    smt_gain /= weight;
3622
3623    return smt_gain;
3624}
3625
3626unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3627{
3628    return default_scale_smt_power(sd, cpu);
3629}
3630
3631unsigned long scale_rt_power(int cpu)
3632{
3633    struct rq *rq = cpu_rq(cpu);
3634    u64 total, available;
3635
3636    sched_avg_update(rq);
3637
3638    total = sched_avg_period() + (rq->clock - rq->age_stamp);
3639    available = total - rq->rt_avg;
3640
3641    if (unlikely((s64)total < SCHED_LOAD_SCALE))
3642        total = SCHED_LOAD_SCALE;
3643
3644    total >>= SCHED_LOAD_SHIFT;
3645
3646    return div_u64(available, total);
3647}
3648
3649static void update_cpu_power(struct sched_domain *sd, int cpu)
3650{
3651    unsigned long weight = cpumask_weight(sched_domain_span(sd));
3652    unsigned long power = SCHED_LOAD_SCALE;
3653    struct sched_group *sdg = sd->groups;
3654
3655    if (sched_feat(ARCH_POWER))
3656        power *= arch_scale_freq_power(sd, cpu);
3657    else
3658        power *= default_scale_freq_power(sd, cpu);
3659
3660    power >>= SCHED_LOAD_SHIFT;
3661
3662    if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3663        if (sched_feat(ARCH_POWER))
3664            power *= arch_scale_smt_power(sd, cpu);
3665        else
3666            power *= default_scale_smt_power(sd, cpu);
3667
3668        power >>= SCHED_LOAD_SHIFT;
3669    }
3670
3671    power *= scale_rt_power(cpu);
3672    power >>= SCHED_LOAD_SHIFT;
3673
3674    if (!power)
3675        power = 1;
3676
3677    sdg->cpu_power = power;
3678}
3679
3680static void update_group_power(struct sched_domain *sd, int cpu)
3681{
3682    struct sched_domain *child = sd->child;
3683    struct sched_group *group, *sdg = sd->groups;
3684    unsigned long power;
3685
3686    if (!child) {
3687        update_cpu_power(sd, cpu);
3688        return;
3689    }
3690
3691    power = 0;
3692
3693    group = child->groups;
3694    do {
3695        power += group->cpu_power;
3696        group = group->next;
3697    } while (group != child->groups);
3698
3699    sdg->cpu_power = power;
3700}
3701
3702/**
3703 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3704 * @sd: The sched_domain whose statistics are to be updated.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3714 */
3715static inline void update_sg_lb_stats(struct sched_domain *sd,
3716            struct sched_group *group, int this_cpu,
3717            enum cpu_idle_type idle, int load_idx, int *sd_idle,
3718            int local_group, const struct cpumask *cpus,
3719            int *balance, struct sg_lb_stats *sgs)
3720{
3721    unsigned long load, max_cpu_load, min_cpu_load;
3722    int i;
3723    unsigned int balance_cpu = -1, first_idle_cpu = 0;
3724    unsigned long sum_avg_load_per_task;
3725    unsigned long avg_load_per_task;
3726
3727    if (local_group) {
3728        balance_cpu = group_first_cpu(group);
3729        if (balance_cpu == this_cpu)
3730            update_group_power(sd, this_cpu);
3731    }
3732
3733    /* Tally up the load of all CPUs in the group */
3734    sum_avg_load_per_task = avg_load_per_task = 0;
3735    max_cpu_load = 0;
3736    min_cpu_load = ~0UL;
3737
3738    for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3739        struct rq *rq = cpu_rq(i);
3740
3741        if (*sd_idle && rq->nr_running)
3742            *sd_idle = 0;
3743
3744        /* Bias balancing toward cpus of our domain */
3745        if (local_group) {
3746            if (idle_cpu(i) && !first_idle_cpu) {
3747                first_idle_cpu = 1;
3748                balance_cpu = i;
3749            }
3750
3751            load = target_load(i, load_idx);
3752        } else {
3753            load = source_load(i, load_idx);
3754            if (load > max_cpu_load)
3755                max_cpu_load = load;
3756            if (min_cpu_load > load)
3757                min_cpu_load = load;
3758        }
3759
3760        sgs->group_load += load;
3761        sgs->sum_nr_running += rq->nr_running;
3762        sgs->sum_weighted_load += weighted_cpuload(i);
3763
3764        sum_avg_load_per_task += cpu_avg_load_per_task(i);
3765    }
3766
3767    /*
3768     * First idle cpu or the first cpu(busiest) in this sched group
3769     * is eligible for doing load balancing at this and above
3770     * domains. In the newly idle case, we will allow all the cpu's
3771     * to do the newly idle load balance.
3772     */
3773    if (idle != CPU_NEWLY_IDLE && local_group &&
3774        balance_cpu != this_cpu && balance) {
3775        *balance = 0;
3776        return;
3777    }
3778
3779    /* Adjust by relative CPU power of the group */
3780    sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3781
3782
3783    /*
3784     * Consider the group unbalanced when the imbalance is larger
3785     * than the average weight of two tasks.
3786     *
3787     * APZ: with cgroup the avg task weight can vary wildly and
3788     * might not be a suitable number - should we keep a
3789     * normalized nr_running number somewhere that negates
3790     * the hierarchy?
3791     */
3792    avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3793        group->cpu_power;
3794
3795    if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3796        sgs->group_imb = 1;
3797
3798    sgs->group_capacity =
3799        DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3800}
3801
3802/**
3803 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3804 * @sd: sched_domain whose statistics are to be updated.
3805 * @this_cpu: Cpu for which load balance is currently performed.
3806 * @idle: Idle status of this_cpu
3807 * @sd_idle: Idle status of the sched_domain containing group.
3808 * @cpus: Set of cpus considered for load balancing.
3809 * @balance: Should we balance.
3810 * @sds: variable to hold the statistics for this sched_domain.
3811 */
3812static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3813            enum cpu_idle_type idle, int *sd_idle,
3814            const struct cpumask *cpus, int *balance,
3815            struct sd_lb_stats *sds)
3816{
3817    struct sched_domain *child = sd->child;
3818    struct sched_group *group = sd->groups;
3819    struct sg_lb_stats sgs;
3820    int load_idx, prefer_sibling = 0;
3821
3822    if (child && child->flags & SD_PREFER_SIBLING)
3823        prefer_sibling = 1;
3824
3825    init_sd_power_savings_stats(sd, sds, idle);
3826    load_idx = get_sd_load_idx(sd, idle);
3827
3828    do {
3829        int local_group;
3830
3831        local_group = cpumask_test_cpu(this_cpu,
3832                           sched_group_cpus(group));
3833        memset(&sgs, 0, sizeof(sgs));
3834        update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3835                local_group, cpus, balance, &sgs);
3836
3837        if (local_group && balance && !(*balance))
3838            return;
3839
3840        sds->total_load += sgs.group_load;
3841        sds->total_pwr += group->cpu_power;
3842
3843        /*
3844         * In case the child domain prefers tasks go to siblings
3845         * first, lower the group capacity to one so that we'll try
3846         * and move all the excess tasks away.
3847         */
3848        if (prefer_sibling)
3849            sgs.group_capacity = min(sgs.group_capacity, 1UL);
3850
3851        if (local_group) {
3852            sds->this_load = sgs.avg_load;
3853            sds->this = group;
3854            sds->this_nr_running = sgs.sum_nr_running;
3855            sds->this_load_per_task = sgs.sum_weighted_load;
3856        } else if (sgs.avg_load > sds->max_load &&
3857               (sgs.sum_nr_running > sgs.group_capacity ||
3858                sgs.group_imb)) {
3859            sds->max_load = sgs.avg_load;
3860            sds->busiest = group;
3861            sds->busiest_nr_running = sgs.sum_nr_running;
3862            sds->busiest_load_per_task = sgs.sum_weighted_load;
3863            sds->group_imb = sgs.group_imb;
3864        }
3865
3866        update_sd_power_savings_stats(group, sds, local_group, &sgs);
3867        group = group->next;
3868    } while (group != sd->groups);
3869}
3870
3871/**
3872 * fix_small_imbalance - Calculate the minor imbalance that exists
3873 * amongst the groups of a sched_domain, during
3874 * load balancing.
3875 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3876 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3877 * @imbalance: Variable to store the imbalance.
3878 */
3879static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3880                int this_cpu, unsigned long *imbalance)
3881{
3882    unsigned long tmp, pwr_now = 0, pwr_move = 0;
3883    unsigned int imbn = 2;
3884
3885    if (sds->this_nr_running) {
3886        sds->this_load_per_task /= sds->this_nr_running;
3887        if (sds->busiest_load_per_task >
3888                sds->this_load_per_task)
3889            imbn = 1;
3890    } else
3891        sds->this_load_per_task =
3892            cpu_avg_load_per_task(this_cpu);
3893
3894    if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3895            sds->busiest_load_per_task * imbn) {
3896        *imbalance = sds->busiest_load_per_task;
3897        return;
3898    }
3899
3900    /*
3901     * OK, we don't have enough imbalance to justify moving tasks,
3902     * however we may be able to increase total CPU power used by
3903     * moving them.
3904     */
3905
3906    pwr_now += sds->busiest->cpu_power *
3907            min(sds->busiest_load_per_task, sds->max_load);
3908    pwr_now += sds->this->cpu_power *
3909            min(sds->this_load_per_task, sds->this_load);
3910    pwr_now /= SCHED_LOAD_SCALE;
3911
3912    /* Amount of load we'd subtract */
3913    tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3914        sds->busiest->cpu_power;
3915    if (sds->max_load > tmp)
3916        pwr_move += sds->busiest->cpu_power *
3917            min(sds->busiest_load_per_task, sds->max_load - tmp);
3918
3919    /* Amount of load we'd add */
3920    if (sds->max_load * sds->busiest->cpu_power <
3921        sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3922        tmp = (sds->max_load * sds->busiest->cpu_power) /
3923            sds->this->cpu_power;
3924    else
3925        tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3926            sds->this->cpu_power;
3927    pwr_move += sds->this->cpu_power *
3928            min(sds->this_load_per_task, sds->this_load + tmp);
3929    pwr_move /= SCHED_LOAD_SCALE;
3930
3931    /* Move if we gain throughput */
3932    if (pwr_move > pwr_now)
3933        *imbalance = sds->busiest_load_per_task;
3934}
3935
3936/**
3937 * calculate_imbalance - Calculate the amount of imbalance present within the
3938 * groups of a given sched_domain during load balance.
3939 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3940 * @this_cpu: Cpu for which currently load balance is being performed.
3941 * @imbalance: The variable to store the imbalance.
3942 */
3943static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3944        unsigned long *imbalance)
3945{
3946    unsigned long max_pull;
3947    /*
3948     * In the presence of smp nice balancing, certain scenarios can have
3949     * max load less than avg load(as we skip the groups at or below
3950     * its cpu_power, while calculating max_load..)
3951     */
3952    if (sds->max_load < sds->avg_load) {
3953        *imbalance = 0;
3954        return fix_small_imbalance(sds, this_cpu, imbalance);
3955    }
3956
3957    /* Don't want to pull so many tasks that a group would go idle */
3958    max_pull = min(sds->max_load - sds->avg_load,
3959            sds->max_load - sds->busiest_load_per_task);
3960
3961    /* How much load to actually move to equalise the imbalance */
3962    *imbalance = min(max_pull * sds->busiest->cpu_power,
3963        (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3964            / SCHED_LOAD_SCALE;
3965
3966    /*
3967     * if *imbalance is less than the average load per runnable task
3968     * there is no gaurantee that any tasks will be moved so we'll have
3969     * a think about bumping its value to force at least one task to be
3970     * moved
3971     */
3972    if (*imbalance < sds->busiest_load_per_task)
3973        return fix_small_imbalance(sds, this_cpu, imbalance);
3974
3975}
3976/******* find_busiest_group() helpers end here *********************/
3977
3978/**
3979 * find_busiest_group - Returns the busiest group within the sched_domain
3980 * if there is an imbalance. If there isn't an imbalance, and
3981 * the user has opted for power-savings, it returns a group whose
3982 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3983 * such a group exists.
3984 *
3985 * Also calculates the amount of weighted load which should be moved
3986 * to restore balance.
3987 *
3988 * @sd: The sched_domain whose busiest group is to be returned.
3989 * @this_cpu: The cpu for which load balancing is currently being performed.
3990 * @imbalance: Variable which stores amount of weighted load which should
3991 * be moved to restore balance/put a group to idle.
3992 * @idle: The idle status of this_cpu.
3993 * @sd_idle: The idleness of sd
3994 * @cpus: The set of CPUs under consideration for load-balancing.
3995 * @balance: Pointer to a variable indicating if this_cpu
3996 * is the appropriate cpu to perform load balancing at this_level.
3997 *
3998 * Returns: - the busiest group if imbalance exists.
3999 * - If no imbalance and user has opted for power-savings balance,
4000 * return the least loaded group whose CPUs can be
4001 * put to idle by rebalancing its tasks onto our group.
4002 */
4003static struct sched_group *
4004find_busiest_group(struct sched_domain *sd, int this_cpu,
4005           unsigned long *imbalance, enum cpu_idle_type idle,
4006           int *sd_idle, const struct cpumask *cpus, int *balance)
4007{
4008    struct sd_lb_stats sds;
4009
4010    memset(&sds, 0, sizeof(sds));
4011
4012    /*
4013     * Compute the various statistics relavent for load balancing at
4014     * this level.
4015     */
4016    update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4017                    balance, &sds);
4018
4019    /* Cases where imbalance does not exist from POV of this_cpu */
4020    /* 1) this_cpu is not the appropriate cpu to perform load balancing
4021     * at this level.
4022     * 2) There is no busy sibling group to pull from.
4023     * 3) This group is the busiest group.
4024     * 4) This group is more busy than the avg busieness at this
4025     * sched_domain.
4026     * 5) The imbalance is within the specified limit.
4027     * 6) Any rebalance would lead to ping-pong
4028     */
4029    if (balance && !(*balance))
4030        goto ret;
4031
4032    if (!sds.busiest || sds.busiest_nr_running == 0)
4033        goto out_balanced;
4034
4035    if (sds.this_load >= sds.max_load)
4036        goto out_balanced;
4037
4038    sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4039
4040    if (sds.this_load >= sds.avg_load)
4041        goto out_balanced;
4042
4043    if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4044        goto out_balanced;
4045
4046    sds.busiest_load_per_task /= sds.busiest_nr_running;
4047    if (sds.group_imb)
4048        sds.busiest_load_per_task =
4049            min(sds.busiest_load_per_task, sds.avg_load);
4050
4051    /*
4052     * We're trying to get all the cpus to the average_load, so we don't
4053     * want to push ourselves above the average load, nor do we wish to
4054     * reduce the max loaded cpu below the average load, as either of these
4055     * actions would just result in more rebalancing later, and ping-pong
4056     * tasks around. Thus we look for the minimum possible imbalance.
4057     * Negative imbalances (*we* are more loaded than anyone else) will
4058     * be counted as no imbalance for these purposes -- we can't fix that
4059     * by pulling tasks to us. Be careful of negative numbers as they'll
4060     * appear as very large values with unsigned longs.
4061     */
4062    if (sds.max_load <= sds.busiest_load_per_task)
4063        goto out_balanced;
4064
4065    /* Looks like there is an imbalance. Compute it */
4066    calculate_imbalance(&sds, this_cpu, imbalance);
4067    return sds.busiest;
4068
4069out_balanced:
4070    /*
4071     * There is no obvious imbalance. But check if we can do some balancing
4072     * to save power.
4073     */
4074    if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4075        return sds.busiest;
4076ret:
4077    *imbalance = 0;
4078    return NULL;
4079}
4080
4081/*
4082 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4083 */
4084static struct rq *
4085find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4086           unsigned long imbalance, const struct cpumask *cpus)
4087{
4088    struct rq *busiest = NULL, *rq;
4089    unsigned long max_load = 0;
4090    int i;
4091
4092    for_each_cpu(i, sched_group_cpus(group)) {
4093        unsigned long power = power_of(i);
4094        unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4095        unsigned long wl;
4096
4097        if (!cpumask_test_cpu(i, cpus))
4098            continue;
4099
4100        rq = cpu_rq(i);
4101        wl = weighted_cpuload(i);
4102
4103        /*
4104         * When comparing with imbalance, use weighted_cpuload()
4105         * which is not scaled with the cpu power.
4106         */
4107        if (capacity && rq->nr_running == 1 && wl > imbalance)
4108            continue;
4109
4110        /*
4111         * For the load comparisons with the other cpu's, consider
4112         * the weighted_cpuload() scaled with the cpu power, so that
4113         * the load can be moved away from the cpu that is potentially
4114         * running at a lower capacity.
4115         */
4116        wl = (wl * SCHED_LOAD_SCALE) / power;
4117
4118        if (wl > max_load) {
4119            max_load = wl;
4120            busiest = rq;
4121        }
4122    }
4123
4124    return busiest;
4125}
4126
4127/*
4128 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4129 * so long as it is large enough.
4130 */
4131#define MAX_PINNED_INTERVAL 512
4132
4133/* Working cpumask for load_balance and load_balance_newidle. */
4134static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4135
4136/*
4137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4138 * tasks if there is an imbalance.
4139 */
4140static int load_balance(int this_cpu, struct rq *this_rq,
4141            struct sched_domain *sd, enum cpu_idle_type idle,
4142            int *balance)
4143{
4144    int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4145    struct sched_group *group;
4146    unsigned long imbalance;
4147    struct rq *busiest;
4148    unsigned long flags;
4149    struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4150
4151    cpumask_copy(cpus, cpu_active_mask);
4152
4153    /*
4154     * When power savings policy is enabled for the parent domain, idle
4155     * sibling can pick up load irrespective of busy siblings. In this case,
4156     * let the state of idle sibling percolate up as CPU_IDLE, instead of
4157     * portraying it as CPU_NOT_IDLE.
4158     */
4159    if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4160        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4161        sd_idle = 1;
4162
4163    schedstat_inc(sd, lb_count[idle]);
4164
4165redo:
4166    update_shares(sd);
4167    group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4168                   cpus, balance);
4169
4170    if (*balance == 0)
4171        goto out_balanced;
4172
4173    if (!group) {
4174        schedstat_inc(sd, lb_nobusyg[idle]);
4175        goto out_balanced;
4176    }
4177
4178    busiest = find_busiest_queue(group, idle, imbalance, cpus);
4179    if (!busiest) {
4180        schedstat_inc(sd, lb_nobusyq[idle]);
4181        goto out_balanced;
4182    }
4183
4184    BUG_ON(busiest == this_rq);
4185
4186    schedstat_add(sd, lb_imbalance[idle], imbalance);
4187
4188    ld_moved = 0;
4189    if (busiest->nr_running > 1) {
4190        /*
4191         * Attempt to move tasks. If find_busiest_group has found
4192         * an imbalance but busiest->nr_running <= 1, the group is
4193         * still unbalanced. ld_moved simply stays zero, so it is
4194         * correctly treated as an imbalance.
4195         */
4196        local_irq_save(flags);
4197        double_rq_lock(this_rq, busiest);
4198        ld_moved = move_tasks(this_rq, this_cpu, busiest,
4199                      imbalance, sd, idle, &all_pinned);
4200        double_rq_unlock(this_rq, busiest);
4201        local_irq_restore(flags);
4202
4203        /*
4204         * some other cpu did the load balance for us.
4205         */
4206        if (ld_moved && this_cpu != smp_processor_id())
4207            resched_cpu(this_cpu);
4208
4209        /* All tasks on this runqueue were pinned by CPU affinity */
4210        if (unlikely(all_pinned)) {
4211            cpumask_clear_cpu(cpu_of(busiest), cpus);
4212            if (!cpumask_empty(cpus))
4213                goto redo;
4214            goto out_balanced;
4215        }
4216    }
4217
4218    if (!ld_moved) {
4219        schedstat_inc(sd, lb_failed[idle]);
4220        sd->nr_balance_failed++;
4221
4222        if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4223
4224            spin_lock_irqsave(&busiest->lock, flags);
4225
4226            /* don't kick the migration_thread, if the curr
4227             * task on busiest cpu can't be moved to this_cpu
4228             */
4229            if (!cpumask_test_cpu(this_cpu,
4230                          &busiest->curr->cpus_allowed)) {
4231                spin_unlock_irqrestore(&busiest->lock, flags);
4232                all_pinned = 1;
4233                goto out_one_pinned;
4234            }
4235
4236            if (!busiest->active_balance) {
4237                busiest->active_balance = 1;
4238                busiest->push_cpu = this_cpu;
4239                active_balance = 1;
4240            }
4241            spin_unlock_irqrestore(&busiest->lock, flags);
4242            if (active_balance)
4243                wake_up_process(busiest->migration_thread);
4244
4245            /*
4246             * We've kicked active balancing, reset the failure
4247             * counter.
4248             */
4249            sd->nr_balance_failed = sd->cache_nice_tries+1;
4250        }
4251    } else
4252        sd->nr_balance_failed = 0;
4253
4254    if (likely(!active_balance)) {
4255        /* We were unbalanced, so reset the balancing interval */
4256        sd->balance_interval = sd->min_interval;
4257    } else {
4258        /*
4259         * If we've begun active balancing, start to back off. This
4260         * case may not be covered by the all_pinned logic if there
4261         * is only 1 task on the busy runqueue (because we don't call
4262         * move_tasks).
4263         */
4264        if (sd->balance_interval < sd->max_interval)
4265            sd->balance_interval *= 2;
4266    }
4267
4268    if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4269        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4270        ld_moved = -1;
4271
4272    goto out;
4273
4274out_balanced:
4275    schedstat_inc(sd, lb_balanced[idle]);
4276
4277    sd->nr_balance_failed = 0;
4278
4279out_one_pinned:
4280    /* tune up the balancing interval */
4281    if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4282            (sd->balance_interval < sd->max_interval))
4283        sd->balance_interval *= 2;
4284
4285    if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4286        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4287        ld_moved = -1;
4288    else
4289        ld_moved = 0;
4290out:
4291    if (ld_moved)
4292        update_shares(sd);
4293    return ld_moved;
4294}
4295
4296/*
4297 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4298 * tasks if there is an imbalance.
4299 *
4300 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4301 * this_rq is locked.
4302 */
4303static int
4304load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4305{
4306    struct sched_group *group;
4307    struct rq *busiest = NULL;
4308    unsigned long imbalance;
4309    int ld_moved = 0;
4310    int sd_idle = 0;
4311    int all_pinned = 0;
4312    struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4313
4314    cpumask_copy(cpus, cpu_active_mask);
4315
4316    /*
4317     * When power savings policy is enabled for the parent domain, idle
4318     * sibling can pick up load irrespective of busy siblings. In this case,
4319     * let the state of idle sibling percolate up as IDLE, instead of
4320     * portraying it as CPU_NOT_IDLE.
4321     */
4322    if (sd->flags & SD_SHARE_CPUPOWER &&
4323        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4324        sd_idle = 1;
4325
4326    schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4327redo:
4328    update_shares_locked(this_rq, sd);
4329    group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4330                   &sd_idle, cpus, NULL);
4331    if (!group) {
4332        schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4333        goto out_balanced;
4334    }
4335
4336    busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4337    if (!busiest) {
4338        schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4339        goto out_balanced;
4340    }
4341
4342    BUG_ON(busiest == this_rq);
4343
4344    schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4345
4346    ld_moved = 0;
4347    if (busiest->nr_running > 1) {
4348        /* Attempt to move tasks */
4349        double_lock_balance(this_rq, busiest);
4350        /* this_rq->clock is already updated */
4351        update_rq_clock(busiest);
4352        ld_moved = move_tasks(this_rq, this_cpu, busiest,
4353                    imbalance, sd, CPU_NEWLY_IDLE,
4354                    &all_pinned);
4355        double_unlock_balance(this_rq, busiest);
4356
4357        if (unlikely(all_pinned)) {
4358            cpumask_clear_cpu(cpu_of(busiest), cpus);
4359            if (!cpumask_empty(cpus))
4360                goto redo;
4361        }
4362    }
4363
4364    if (!ld_moved) {
4365        int active_balance = 0;
4366
4367        schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4368        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4370            return -1;
4371
4372        if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4373            return -1;
4374
4375        if (sd->nr_balance_failed++ < 2)
4376            return -1;
4377
4378        /*
4379         * The only task running in a non-idle cpu can be moved to this
4380         * cpu in an attempt to completely freeup the other CPU
4381         * package. The same method used to move task in load_balance()
4382         * have been extended for load_balance_newidle() to speedup
4383         * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4384         *
4385         * The package power saving logic comes from
4386         * find_busiest_group(). If there are no imbalance, then
4387         * f_b_g() will return NULL. However when sched_mc={1,2} then
4388         * f_b_g() will select a group from which a running task may be
4389         * pulled to this cpu in order to make the other package idle.
4390         * If there is no opportunity to make a package idle and if
4391         * there are no imbalance, then f_b_g() will return NULL and no
4392         * action will be taken in load_balance_newidle().
4393         *
4394         * Under normal task pull operation due to imbalance, there
4395         * will be more than one task in the source run queue and
4396         * move_tasks() will succeed. ld_moved will be true and this
4397         * active balance code will not be triggered.
4398         */
4399
4400        /* Lock busiest in correct order while this_rq is held */
4401        double_lock_balance(this_rq, busiest);
4402
4403        /*
4404         * don't kick the migration_thread, if the curr
4405         * task on busiest cpu can't be moved to this_cpu
4406         */
4407        if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4408            double_unlock_balance(this_rq, busiest);
4409            all_pinned = 1;
4410            return ld_moved;
4411        }
4412
4413        if (!busiest->active_balance) {
4414            busiest->active_balance = 1;
4415            busiest->push_cpu = this_cpu;
4416            active_balance = 1;
4417        }
4418
4419        double_unlock_balance(this_rq, busiest);
4420        /*
4421         * Should not call ttwu while holding a rq->lock
4422         */
4423        spin_unlock(&this_rq->lock);
4424        if (active_balance)
4425            wake_up_process(busiest->migration_thread);
4426        spin_lock(&this_rq->lock);
4427
4428    } else
4429        sd->nr_balance_failed = 0;
4430
4431    update_shares_locked(this_rq, sd);
4432    return ld_moved;
4433
4434out_balanced:
4435    schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4436    if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4437        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4438        return -1;
4439    sd->nr_balance_failed = 0;
4440
4441    return 0;
4442}
4443
4444/*
4445 * idle_balance is called by schedule() if this_cpu is about to become
4446 * idle. Attempts to pull tasks from other CPUs.
4447 */
4448static void idle_balance(int this_cpu, struct rq *this_rq)
4449{
4450    struct sched_domain *sd;
4451    int pulled_task = 0;
4452    unsigned long next_balance = jiffies + HZ;
4453
4454    this_rq->idle_stamp = this_rq->clock;
4455
4456    if (this_rq->avg_idle < sysctl_sched_migration_cost)
4457        return;
4458
4459    for_each_domain(this_cpu, sd) {
4460        unsigned long interval;
4461
4462        if (!(sd->flags & SD_LOAD_BALANCE))
4463            continue;
4464
4465        if (sd->flags & SD_BALANCE_NEWIDLE)
4466            /* If we've pulled tasks over stop searching: */
4467            pulled_task = load_balance_newidle(this_cpu, this_rq,
4468                               sd);
4469
4470        interval = msecs_to_jiffies(sd->balance_interval);
4471        if (time_after(next_balance, sd->last_balance + interval))
4472            next_balance = sd->last_balance + interval;
4473        if (pulled_task) {
4474            this_rq->idle_stamp = 0;
4475            break;
4476        }
4477    }
4478    if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4479        /*
4480         * We are going idle. next_balance may be set based on
4481         * a busy processor. So reset next_balance.
4482         */
4483        this_rq->next_balance = next_balance;
4484    }
4485}
4486
4487/*
4488 * active_load_balance is run by migration threads. It pushes running tasks
4489 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4490 * running on each physical CPU where possible, and avoids physical /
4491 * logical imbalances.
4492 *
4493 * Called with busiest_rq locked.
4494 */
4495static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4496{
4497    int target_cpu = busiest_rq->push_cpu;
4498    struct sched_domain *sd;
4499    struct rq *target_rq;
4500
4501    /* Is there any task to move? */
4502    if (busiest_rq->nr_running <= 1)
4503        return;
4504
4505    target_rq = cpu_rq(target_cpu);
4506
4507    /*
4508     * This condition is "impossible", if it occurs
4509     * we need to fix it. Originally reported by
4510     * Bjorn Helgaas on a 128-cpu setup.
4511     */
4512    BUG_ON(busiest_rq == target_rq);
4513
4514    /* move a task from busiest_rq to target_rq */
4515    double_lock_balance(busiest_rq, target_rq);
4516    update_rq_clock(busiest_rq);
4517    update_rq_clock(target_rq);
4518
4519    /* Search for an sd spanning us and the target CPU. */
4520    for_each_domain(target_cpu, sd) {
4521        if ((sd->flags & SD_LOAD_BALANCE) &&
4522            cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4523                break;
4524    }
4525
4526    if (likely(sd)) {
4527        schedstat_inc(sd, alb_count);
4528
4529        if (move_one_task(target_rq, target_cpu, busiest_rq,
4530                  sd, CPU_IDLE))
4531            schedstat_inc(sd, alb_pushed);
4532        else
4533            schedstat_inc(sd, alb_failed);
4534    }
4535    double_unlock_balance(busiest_rq, target_rq);
4536}
4537
4538#ifdef CONFIG_NO_HZ
4539static struct {
4540    atomic_t load_balancer;
4541    cpumask_var_t cpu_mask;
4542    cpumask_var_t ilb_grp_nohz_mask;
4543} nohz ____cacheline_aligned = {
4544    .load_balancer = ATOMIC_INIT(-1),
4545};
4546
4547int get_nohz_load_balancer(void)
4548{
4549    return atomic_read(&nohz.load_balancer);
4550}
4551
4552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4553/**
4554 * lowest_flag_domain - Return lowest sched_domain containing flag.
4555 * @cpu: The cpu whose lowest level of sched domain is to
4556 * be returned.
4557 * @flag: The flag to check for the lowest sched_domain
4558 * for the given cpu.
4559 *
4560 * Returns the lowest sched_domain of a cpu which contains the given flag.
4561 */
4562static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4563{
4564    struct sched_domain *sd;
4565
4566    for_each_domain(cpu, sd)
4567        if (sd && (sd->flags & flag))
4568            break;
4569
4570    return sd;
4571}
4572
4573/**
4574 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4575 * @cpu: The cpu whose domains we're iterating over.
4576 * @sd: variable holding the value of the power_savings_sd
4577 * for cpu.
4578 * @flag: The flag to filter the sched_domains to be iterated.
4579 *
4580 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4581 * set, starting from the lowest sched_domain to the highest.
4582 */
4583#define for_each_flag_domain(cpu, sd, flag) \
4584    for (sd = lowest_flag_domain(cpu, flag); \
4585        (sd && (sd->flags & flag)); sd = sd->parent)
4586
4587/**
4588 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4589 * @ilb_group: group to be checked for semi-idleness
4590 *
4591 * Returns: 1 if the group is semi-idle. 0 otherwise.
4592 *
4593 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4594 * and atleast one non-idle CPU. This helper function checks if the given
4595 * sched_group is semi-idle or not.
4596 */
4597static inline int is_semi_idle_group(struct sched_group *ilb_group)
4598{
4599    cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4600                    sched_group_cpus(ilb_group));
4601
4602    /*
4603     * A sched_group is semi-idle when it has atleast one busy cpu
4604     * and atleast one idle cpu.
4605     */
4606    if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4607        return 0;
4608
4609    if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4610        return 0;
4611
4612    return 1;
4613}
4614/**
4615 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4616 * @cpu: The cpu which is nominating a new idle_load_balancer.
4617 *
4618 * Returns: Returns the id of the idle load balancer if it exists,
4619 * Else, returns >= nr_cpu_ids.
4620 *
4621 * This algorithm picks the idle load balancer such that it belongs to a
4622 * semi-idle powersavings sched_domain. The idea is to try and avoid
4623 * completely idle packages/cores just for the purpose of idle load balancing
4624 * when there are other idle cpu's which are better suited for that job.
4625 */
4626static int find_new_ilb(int cpu)
4627{
4628    struct sched_domain *sd;
4629    struct sched_group *ilb_group;
4630
4631    /*
4632     * Have idle load balancer selection from semi-idle packages only
4633     * when power-aware load balancing is enabled
4634     */
4635    if (!(sched_smt_power_savings || sched_mc_power_savings))
4636        goto out_done;
4637
4638    /*
4639     * Optimize for the case when we have no idle CPUs or only one
4640     * idle CPU. Don't walk the sched_domain hierarchy in such cases
4641     */
4642    if (cpumask_weight(nohz.cpu_mask) < 2)
4643        goto out_done;
4644
4645    for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4646        ilb_group = sd->groups;
4647
4648        do {
4649            if (is_semi_idle_group(ilb_group))
4650                return cpumask_first(nohz.ilb_grp_nohz_mask);
4651
4652            ilb_group = ilb_group->next;
4653
4654        } while (ilb_group != sd->groups);
4655    }
4656
4657out_done:
4658    return cpumask_first(nohz.cpu_mask);
4659}
4660#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4661static inline int find_new_ilb(int call_cpu)
4662{
4663    return cpumask_first(nohz.cpu_mask);
4664}
4665#endif
4666
4667/*
4668 * This routine will try to nominate the ilb (idle load balancing)
4669 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4670 * load balancing on behalf of all those cpus. If all the cpus in the system
4671 * go into this tickless mode, then there will be no ilb owner (as there is
4672 * no need for one) and all the cpus will sleep till the next wakeup event
4673 * arrives...
4674 *
4675 * For the ilb owner, tick is not stopped. And this tick will be used
4676 * for idle load balancing. ilb owner will still be part of
4677 * nohz.cpu_mask..
4678 *
4679 * While stopping the tick, this cpu will become the ilb owner if there
4680 * is no other owner. And will be the owner till that cpu becomes busy
4681 * or if all cpus in the system stop their ticks at which point
4682 * there is no need for ilb owner.
4683 *
4684 * When the ilb owner becomes busy, it nominates another owner, during the
4685 * next busy scheduler_tick()
4686 */
4687int select_nohz_load_balancer(int stop_tick)
4688{
4689    int cpu = smp_processor_id();
4690
4691    if (stop_tick) {
4692        cpu_rq(cpu)->in_nohz_recently = 1;
4693
4694        if (!cpu_active(cpu)) {
4695            if (atomic_read(&nohz.load_balancer) != cpu)
4696                return 0;
4697
4698            /*
4699             * If we are going offline and still the leader,
4700             * give up!
4701             */
4702            if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4703                BUG();
4704
4705            return 0;
4706        }
4707
4708        cpumask_set_cpu(cpu, nohz.cpu_mask);
4709
4710        /* time for ilb owner also to sleep */
4711        if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4712            if (atomic_read(&nohz.load_balancer) == cpu)
4713                atomic_set(&nohz.load_balancer, -1);
4714            return 0;
4715        }
4716
4717        if (atomic_read(&nohz.load_balancer) == -1) {
4718            /* make me the ilb owner */
4719            if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4720                return 1;
4721        } else if (atomic_read(&nohz.load_balancer) == cpu) {
4722            int new_ilb;
4723
4724            if (!(sched_smt_power_savings ||
4725                        sched_mc_power_savings))
4726                return 1;
4727            /*
4728             * Check to see if there is a more power-efficient
4729             * ilb.
4730             */
4731            new_ilb = find_new_ilb(cpu);
4732            if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4733                atomic_set(&nohz.load_balancer, -1);
4734                resched_cpu(new_ilb);
4735                return 0;
4736            }
4737            return 1;
4738        }
4739    } else {
4740        if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4741            return 0;
4742
4743        cpumask_clear_cpu(cpu, nohz.cpu_mask);
4744
4745        if (atomic_read(&nohz.load_balancer) == cpu)
4746            if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4747                BUG();
4748    }
4749    return 0;
4750}
4751#endif
4752
4753static DEFINE_SPINLOCK(balancing);
4754
4755/*
4756 * It checks each scheduling domain to see if it is due to be balanced,
4757 * and initiates a balancing operation if so.
4758 *
4759 * Balancing parameters are set up in arch_init_sched_domains.
4760 */
4761static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4762{
4763    int balance = 1;
4764    struct rq *rq = cpu_rq(cpu);
4765    unsigned long interval;
4766    struct sched_domain *sd;
4767    /* Earliest time when we have to do rebalance again */
4768    unsigned long next_balance = jiffies + 60*HZ;
4769    int update_next_balance = 0;
4770    int need_serialize;
4771
4772    for_each_domain(cpu, sd) {
4773        if (!(sd->flags & SD_LOAD_BALANCE))
4774            continue;
4775
4776        interval = sd->balance_interval;
4777        if (idle != CPU_IDLE)
4778            interval *= sd->busy_factor;
4779
4780        /* scale ms to jiffies */
4781        interval = msecs_to_jiffies(interval);
4782        if (unlikely(!interval))
4783            interval = 1;
4784        if (interval > HZ*NR_CPUS/10)
4785            interval = HZ*NR_CPUS/10;
4786
4787        need_serialize = sd->flags & SD_SERIALIZE;
4788
4789        if (need_serialize) {
4790            if (!spin_trylock(&balancing))
4791                goto out;
4792        }
4793
4794        if (time_after_eq(jiffies, sd->last_balance + interval)) {
4795            if (load_balance(cpu, rq, sd, idle, &balance)) {
4796                /*
4797                 * We've pulled tasks over so either we're no
4798                 * longer idle, or one of our SMT siblings is
4799                 * not idle.
4800                 */
4801                idle = CPU_NOT_IDLE;
4802            }
4803            sd->last_balance = jiffies;
4804        }
4805        if (need_serialize)
4806            spin_unlock(&balancing);
4807out:
4808        if (time_after(next_balance, sd->last_balance + interval)) {
4809            next_balance = sd->last_balance + interval;
4810            update_next_balance = 1;
4811        }
4812
4813        /*
4814         * Stop the load balance at this level. There is another
4815         * CPU in our sched group which is doing load balancing more
4816         * actively.
4817         */
4818        if (!balance)
4819            break;
4820    }
4821
4822    /*
4823     * next_balance will be updated only when there is a need.
4824     * When the cpu is attached to null domain for ex, it will not be
4825     * updated.
4826     */
4827    if (likely(update_next_balance))
4828        rq->next_balance = next_balance;
4829}
4830
4831/*
4832 * run_rebalance_domains is triggered when needed from the scheduler tick.
4833 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4834 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4835 */
4836static void run_rebalance_domains(struct softirq_action *h)
4837{
4838    int this_cpu = smp_processor_id();
4839    struct rq *this_rq = cpu_rq(this_cpu);
4840    enum cpu_idle_type idle = this_rq->idle_at_tick ?
4841                        CPU_IDLE : CPU_NOT_IDLE;
4842
4843    rebalance_domains(this_cpu, idle);
4844
4845#ifdef CONFIG_NO_HZ
4846    /*
4847     * If this cpu is the owner for idle load balancing, then do the
4848     * balancing on behalf of the other idle cpus whose ticks are
4849     * stopped.
4850     */
4851    if (this_rq->idle_at_tick &&
4852        atomic_read(&nohz.load_balancer) == this_cpu) {
4853        struct rq *rq;
4854        int balance_cpu;
4855
4856        for_each_cpu(balance_cpu, nohz.cpu_mask) {
4857            if (balance_cpu == this_cpu)
4858                continue;
4859
4860            /*
4861             * If this cpu gets work to do, stop the load balancing
4862             * work being done for other cpus. Next load
4863             * balancing owner will pick it up.
4864             */
4865            if (need_resched())
4866                break;
4867
4868            rebalance_domains(balance_cpu, CPU_IDLE);
4869
4870            rq = cpu_rq(balance_cpu);
4871            if (time_after(this_rq->next_balance, rq->next_balance))
4872                this_rq->next_balance = rq->next_balance;
4873        }
4874    }
4875#endif
4876}
4877
4878static inline int on_null_domain(int cpu)
4879{
4880    return !rcu_dereference(cpu_rq(cpu)->sd);
4881}
4882
4883/*
4884 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4885 *
4886 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4887 * idle load balancing owner or decide to stop the periodic load balancing,
4888 * if the whole system is idle.
4889 */
4890static inline void trigger_load_balance(struct rq *rq, int cpu)
4891{
4892#ifdef CONFIG_NO_HZ
4893    /*
4894     * If we were in the nohz mode recently and busy at the current
4895     * scheduler tick, then check if we need to nominate new idle
4896     * load balancer.
4897     */
4898    if (rq->in_nohz_recently && !rq->idle_at_tick) {
4899        rq->in_nohz_recently = 0;
4900
4901        if (atomic_read(&nohz.load_balancer) == cpu) {
4902            cpumask_clear_cpu(cpu, nohz.cpu_mask);
4903            atomic_set(&nohz.load_balancer, -1);
4904        }
4905
4906        if (atomic_read(&nohz.load_balancer) == -1) {
4907            int ilb = find_new_ilb(cpu);
4908
4909            if (ilb < nr_cpu_ids)
4910                resched_cpu(ilb);
4911        }
4912    }
4913
4914    /*
4915     * If this cpu is idle and doing idle load balancing for all the
4916     * cpus with ticks stopped, is it time for that to stop?
4917     */
4918    if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4919        cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4920        resched_cpu(cpu);
4921        return;
4922    }
4923
4924    /*
4925     * If this cpu is idle and the idle load balancing is done by
4926     * someone else, then no need raise the SCHED_SOFTIRQ
4927     */
4928    if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4929        cpumask_test_cpu(cpu, nohz.cpu_mask))
4930        return;
4931#endif
4932    /* Don't need to rebalance while attached to NULL domain */
4933    if (time_after_eq(jiffies, rq->next_balance) &&
4934        likely(!on_null_domain(cpu)))
4935        raise_softirq(SCHED_SOFTIRQ);
4936}
4937
4938#else /* CONFIG_SMP */
4939
4940/*
4941 * on UP we do not need to balance between CPUs:
4942 */
4943static inline void idle_balance(int cpu, struct rq *rq)
4944{
4945}
4946
4947#endif
4948
4949DEFINE_PER_CPU(struct kernel_stat, kstat);
4950
4951EXPORT_PER_CPU_SYMBOL(kstat);
4952
4953/*
4954 * Return any ns on the sched_clock that have not yet been accounted in
4955 * @p in case that task is currently running.
4956 *
4957 * Called with task_rq_lock() held on @rq.
4958 */
4959static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4960{
4961    u64 ns = 0;
4962
4963    if (task_current(rq, p)) {
4964        update_rq_clock(rq);
4965        ns = rq->clock - p->se.exec_start;
4966        if ((s64)ns < 0)
4967            ns = 0;
4968    }
4969
4970    return ns;
4971}
4972
4973unsigned long long task_delta_exec(struct task_struct *p)
4974{
4975    unsigned long flags;
4976    struct rq *rq;
4977    u64 ns = 0;
4978
4979    rq = task_rq_lock(p, &flags);
4980    ns = do_task_delta_exec(p, rq);
4981    task_rq_unlock(rq, &flags);
4982
4983    return ns;
4984}
4985
4986/*
4987 * Return accounted runtime for the task.
4988 * In case the task is currently running, return the runtime plus current's
4989 * pending runtime that have not been accounted yet.
4990 */
4991unsigned long long task_sched_runtime(struct task_struct *p)
4992{
4993    unsigned long flags;
4994    struct rq *rq;
4995    u64 ns = 0;
4996
4997    rq = task_rq_lock(p, &flags);
4998    ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4999    task_rq_unlock(rq, &flags);
5000
5001    return ns;
5002}
5003
5004/*
5005 * Return sum_exec_runtime for the thread group.
5006 * In case the task is currently running, return the sum plus current's
5007 * pending runtime that have not been accounted yet.
5008 *
5009 * Note that the thread group might have other running tasks as well,
5010 * so the return value not includes other pending runtime that other
5011 * running tasks might have.
5012 */
5013unsigned long long thread_group_sched_runtime(struct task_struct *p)
5014{
5015    struct task_cputime totals;
5016    unsigned long flags;
5017    struct rq *rq;
5018    u64 ns;
5019
5020    rq = task_rq_lock(p, &flags);
5021    thread_group_cputime(p, &totals);
5022    ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5023    task_rq_unlock(rq, &flags);
5024
5025    return ns;
5026}
5027
5028/*
5029 * Account user cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
5031 * @cputime: the cpu time spent in user space since the last update
5032 * @cputime_scaled: cputime scaled by cpu frequency
5033 */
5034void account_user_time(struct task_struct *p, cputime_t cputime,
5035               cputime_t cputime_scaled)
5036{
5037    struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038    cputime64_t tmp;
5039
5040    /* Add user time to process. */
5041    p->utime = cputime_add(p->utime, cputime);
5042    p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043    account_group_user_time(p, cputime);
5044
5045    /* Add user time to cpustat. */
5046    tmp = cputime_to_cputime64(cputime);
5047    if (TASK_NICE(p) > 0)
5048        cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049    else
5050        cpustat->user = cputime64_add(cpustat->user, tmp);
5051
5052    cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5053    /* Account for user time used */
5054    acct_update_integrals(p);
5055}
5056
5057/*
5058 * Account guest cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @cputime: the cpu time spent in virtual machine since the last update
5061 * @cputime_scaled: cputime scaled by cpu frequency
5062 */
5063static void account_guest_time(struct task_struct *p, cputime_t cputime,
5064                   cputime_t cputime_scaled)
5065{
5066    cputime64_t tmp;
5067    struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5068
5069    tmp = cputime_to_cputime64(cputime);
5070
5071    /* Add guest time to process. */
5072    p->utime = cputime_add(p->utime, cputime);
5073    p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5074    account_group_user_time(p, cputime);
5075    p->gtime = cputime_add(p->gtime, cputime);
5076
5077    /* Add guest time to cpustat. */
5078    cpustat->user = cputime64_add(cpustat->user, tmp);
5079    cpustat->guest = cputime64_add(cpustat->guest, tmp);
5080}
5081
5082/*
5083 * Account system cpu time to a process.
5084 * @p: the process that the cpu time gets accounted to
5085 * @hardirq_offset: the offset to subtract from hardirq_count()
5086 * @cputime: the cpu time spent in kernel space since the last update
5087 * @cputime_scaled: cputime scaled by cpu frequency
5088 */
5089void account_system_time(struct task_struct *p, int hardirq_offset,
5090             cputime_t cputime, cputime_t cputime_scaled)
5091{
5092    struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5093    cputime64_t tmp;
5094
5095    if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5096        account_guest_time(p, cputime, cputime_scaled);
5097        return;
5098    }
5099
5100    /* Add system time to process. */
5101    p->stime = cputime_add(p->stime, cputime);
5102    p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5103    account_group_system_time(p, cputime);
5104
5105    /* Add system time to cpustat. */
5106    tmp = cputime_to_cputime64(cputime);
5107    if (hardirq_count() - hardirq_offset)
5108        cpustat->irq = cputime64_add(cpustat->irq, tmp);
5109    else if (softirq_count())
5110        cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5111    else
5112        cpustat->system = cputime64_add(cpustat->system, tmp);
5113
5114    cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5115
5116    /* Account for system time used */
5117    acct_update_integrals(p);
5118}
5119
5120/*
5121 * Account for involuntary wait time.
5122 * @steal: the cpu time spent in involuntary wait
5123 */
5124void account_steal_time(cputime_t cputime)
5125{
5126    struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5127    cputime64_t cputime64 = cputime_to_cputime64(cputime);
5128
5129    cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5130}
5131
5132/*
5133 * Account for idle time.
5134 * @cputime: the cpu time spent in idle wait
5135 */
5136void account_idle_time(cputime_t cputime)
5137{
5138    struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5139    cputime64_t cputime64 = cputime_to_cputime64(cputime);
5140    struct rq *rq = this_rq();
5141
5142    if (atomic_read(&rq->nr_iowait) > 0)
5143        cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5144    else
5145        cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5146}
5147
5148#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5149
5150/*
5151 * Account a single tick of cpu time.
5152 * @p: the process that the cpu time gets accounted to
5153 * @user_tick: indicates if the tick is a user or a system tick
5154 */
5155void account_process_tick(struct task_struct *p, int user_tick)
5156{
5157    cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5158    struct rq *rq = this_rq();
5159
5160    if (user_tick)
5161        account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5162    else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5163        account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5164                    one_jiffy_scaled);
5165    else
5166        account_idle_time(cputime_one_jiffy);
5167}
5168
5169/*
5170 * Account multiple ticks of steal time.
5171 * @p: the process from which the cpu time has been stolen
5172 * @ticks: number of stolen ticks
5173 */
5174void account_steal_ticks(unsigned long ticks)
5175{
5176    account_steal_time(jiffies_to_cputime(ticks));
5177}
5178
5179/*
5180 * Account multiple ticks of idle time.
5181 * @ticks: number of stolen ticks
5182 */
5183void account_idle_ticks(unsigned long ticks)
5184{
5185    account_idle_time(jiffies_to_cputime(ticks));
5186}
5187
5188#endif
5189
5190/*
5191 * Use precise platform statistics if available:
5192 */
5193#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5194cputime_t task_utime(struct task_struct *p)
5195{
5196    return p->utime;
5197}
5198
5199cputime_t task_stime(struct task_struct *p)
5200{
5201    return p->stime;
5202}
5203#else
5204cputime_t task_utime(struct task_struct *p)
5205{
5206    clock_t utime = cputime_to_clock_t(p->utime),
5207        total = utime + cputime_to_clock_t(p->stime);
5208    u64 temp;
5209
5210    /*
5211     * Use CFS's precise accounting:
5212     */
5213    temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5214
5215    if (total) {
5216        temp *= utime;
5217        do_div(temp, total);
5218    }
5219    utime = (clock_t)temp;
5220
5221    p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5222    return p->prev_utime;
5223}
5224
5225cputime_t task_stime(struct task_struct *p)
5226{
5227    clock_t stime;
5228
5229    /*
5230     * Use CFS's precise accounting. (we subtract utime from
5231     * the total, to make sure the total observed by userspace
5232     * grows monotonically - apps rely on that):
5233     */
5234    stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5235            cputime_to_clock_t(task_utime(p));
5236
5237    if (stime >= 0)
5238        p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5239
5240    return p->prev_stime;
5241}
5242#endif
5243
5244inline cputime_t task_gtime(struct task_struct *p)
5245{
5246    return p->gtime;
5247}
5248
5249/*
5250 * This function gets called by the timer code, with HZ frequency.
5251 * We call it with interrupts disabled.
5252 *
5253 * It also gets called by the fork code, when changing the parent's
5254 * timeslices.
5255 */
5256void scheduler_tick(void)
5257{
5258    int cpu = smp_processor_id();
5259    struct rq *rq = cpu_rq(cpu);
5260    struct task_struct *curr = rq->curr;
5261
5262    sched_clock_tick();
5263
5264    spin_lock(&rq->lock);
5265    update_rq_clock(rq);
5266    update_cpu_load(rq);
5267    curr->sched_class->task_tick(rq, curr, 0);
5268    spin_unlock(&rq->lock);
5269
5270    perf_event_task_tick(curr, cpu);
5271
5272#ifdef CONFIG_SMP
5273    rq->idle_at_tick = idle_cpu(cpu);
5274    trigger_load_balance(rq, cpu);
5275#endif
5276}
5277
5278notrace unsigned long get_parent_ip(unsigned long addr)
5279{
5280    if (in_lock_functions(addr)) {
5281        addr = CALLER_ADDR2;
5282        if (in_lock_functions(addr))
5283            addr = CALLER_ADDR3;
5284    }
5285    return addr;
5286}
5287
5288#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5289                defined(CONFIG_PREEMPT_TRACER))
5290
5291void __kprobes add_preempt_count(int val)
5292{
5293#ifdef CONFIG_DEBUG_PREEMPT
5294    /*
5295     * Underflow?
5296     */
5297    if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5298        return;
5299#endif
5300    preempt_count() += val;
5301#ifdef CONFIG_DEBUG_PREEMPT
5302    /*
5303     * Spinlock count overflowing soon?
5304     */
5305    DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5306                PREEMPT_MASK - 10);
5307#endif
5308    if (preempt_count() == val)
5309        trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5310}
5311EXPORT_SYMBOL(add_preempt_count);
5312
5313void __kprobes sub_preempt_count(int val)
5314{
5315#ifdef CONFIG_DEBUG_PREEMPT
5316    /*
5317     * Underflow?
5318     */
5319    if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5320        return;
5321    /*
5322     * Is the spinlock portion underflowing?
5323     */
5324    if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5325            !(preempt_count() & PREEMPT_MASK)))
5326        return;
5327#endif
5328
5329    if (preempt_count() == val)
5330        trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5331    preempt_count() -= val;
5332}
5333EXPORT_SYMBOL(sub_preempt_count);
5334
5335#endif
5336
5337/*
5338 * Print scheduling while atomic bug:
5339 */
5340static noinline void __schedule_bug(struct task_struct *prev)
5341{
5342    struct pt_regs *regs = get_irq_regs();
5343
5344    printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5345        prev->comm, prev->pid, preempt_count());
5346
5347    debug_show_held_locks(prev);
5348    print_modules();
5349    if (irqs_disabled())
5350        print_irqtrace_events(prev);
5351
5352    if (regs)
5353        show_regs(regs);
5354    else
5355        dump_stack();
5356}
5357
5358/*
5359 * Various schedule()-time debugging checks and statistics:
5360 */
5361static inline void schedule_debug(struct task_struct *prev)
5362{
5363    /*
5364     * Test if we are atomic. Since do_exit() needs to call into
5365     * schedule() atomically, we ignore that path for now.
5366     * Otherwise, whine if we are scheduling when we should not be.
5367     */
5368    if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5369        __schedule_bug(prev);
5370
5371    profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5372
5373    schedstat_inc(this_rq(), sched_count);
5374#ifdef CONFIG_SCHEDSTATS
5375    if (unlikely(prev->lock_depth >= 0)) {
5376        schedstat_inc(this_rq(), bkl_count);
5377        schedstat_inc(prev, sched_info.bkl_count);
5378    }
5379#endif
5380}
5381
5382static void put_prev_task(struct rq *rq, struct task_struct *p)
5383{
5384    u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5385
5386    update_avg(&p->se.avg_running, runtime);
5387
5388    if (p->state == TASK_RUNNING) {
5389        /*
5390         * In order to avoid avg_overlap growing stale when we are
5391         * indeed overlapping and hence not getting put to sleep, grow
5392         * the avg_overlap on preemption.
5393         *
5394         * We use the average preemption runtime because that
5395         * correlates to the amount of cache footprint a task can
5396         * build up.
5397         */
5398        runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5399        update_avg(&p->se.avg_overlap, runtime);
5400    } else {
5401        update_avg(&p->se.avg_running, 0);
5402    }
5403    p->sched_class->put_prev_task(rq, p);
5404}
5405
5406/*
5407 * Pick up the highest-prio task:
5408 */
5409static inline struct task_struct *
5410pick_next_task(struct rq *rq)
5411{
5412    const struct sched_class *class;
5413    struct task_struct *p;
5414
5415    /*
5416     * Optimization: we know that if all tasks are in
5417     * the fair class we can call that function directly:
5418     */
5419    if (likely(rq->nr_running == rq->cfs.nr_running)) {
5420        p = fair_sched_class.pick_next_task(rq);
5421        if (likely(p))
5422            return p;
5423    }
5424
5425    class = sched_class_highest;
5426    for ( ; ; ) {
5427        p = class->pick_next_task(rq);
5428        if (p)
5429            return p;
5430        /*
5431         * Will never be NULL as the idle class always
5432         * returns a non-NULL p:
5433         */
5434        class = class->next;
5435    }
5436}
5437
5438/*
5439 * schedule() is the main scheduler function.
5440 */
5441asmlinkage void __sched schedule(void)
5442{
5443    struct task_struct *prev, *next;
5444    unsigned long *switch_count;
5445    struct rq *rq;
5446    int cpu;
5447
5448need_resched:
5449    preempt_disable();
5450    cpu = smp_processor_id();
5451    rq = cpu_rq(cpu);
5452    rcu_sched_qs(cpu);
5453    prev = rq->curr;
5454    switch_count = &prev->nivcsw;
5455
5456    release_kernel_lock(prev);
5457need_resched_nonpreemptible:
5458
5459    schedule_debug(prev);
5460
5461    if (sched_feat(HRTICK))
5462        hrtick_clear(rq);
5463
5464    spin_lock_irq(&rq->lock);
5465    update_rq_clock(rq);
5466    clear_tsk_need_resched(prev);
5467
5468    if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5469        if (unlikely(signal_pending_state(prev->state, prev)))
5470            prev->state = TASK_RUNNING;
5471        else
5472            deactivate_task(rq, prev, 1);
5473        switch_count = &prev->nvcsw;
5474    }
5475
5476    pre_schedule(rq, prev);
5477
5478    if (unlikely(!rq->nr_running))
5479        idle_balance(cpu, rq);
5480
5481    put_prev_task(rq, prev);
5482    next = pick_next_task(rq);
5483
5484    if (likely(prev != next)) {
5485        sched_info_switch(prev, next);
5486        perf_event_task_sched_out(prev, next, cpu);
5487
5488        rq->nr_switches++;
5489        rq->curr = next;
5490        ++*switch_count;
5491
5492        context_switch(rq, prev, next); /* unlocks the rq */
5493        /*
5494         * the context switch might have flipped the stack from under
5495         * us, hence refresh the local variables.
5496         */
5497        cpu = smp_processor_id();
5498        rq = cpu_rq(cpu);
5499    } else
5500        spin_unlock_irq(&rq->lock);
5501
5502    post_schedule(rq);
5503
5504    if (unlikely(reacquire_kernel_lock(current) < 0))
5505        goto need_resched_nonpreemptible;
5506
5507    preempt_enable_no_resched();
5508    if (need_resched())
5509        goto need_resched;
5510}
5511EXPORT_SYMBOL(schedule);
5512
5513#ifdef CONFIG_SMP
5514/*
5515 * Look out! "owner" is an entirely speculative pointer
5516 * access and not reliable.
5517 */
5518int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5519{
5520    unsigned int cpu;
5521    struct rq *rq;
5522
5523    if (!sched_feat(OWNER_SPIN))
5524        return 0;
5525
5526#ifdef CONFIG_DEBUG_PAGEALLOC
5527    /*
5528     * Need to access the cpu field knowing that
5529     * DEBUG_PAGEALLOC could have unmapped it if
5530     * the mutex owner just released it and exited.
5531     */
5532    if (probe_kernel_address(&owner->cpu, cpu))
5533        goto out;
5534#else
5535    cpu = owner->cpu;
5536#endif
5537
5538    /*
5539     * Even if the access succeeded (likely case),
5540     * the cpu field may no longer be valid.
5541     */
5542    if (cpu >= nr_cpumask_bits)
5543        goto out;
5544
5545    /*
5546     * We need to validate that we can do a
5547     * get_cpu() and that we have the percpu area.
5548     */
5549    if (!cpu_online(cpu))
5550        goto out;
5551
5552    rq = cpu_rq(cpu);
5553
5554    for (;;) {
5555        /*
5556         * Owner changed, break to re-assess state.
5557         */
5558        if (lock->owner != owner)
5559            break;
5560
5561        /*
5562         * Is that owner really running on that cpu?
5563         */
5564        if (task_thread_info(rq->curr) != owner || need_resched())
5565            return 0;
5566
5567        cpu_relax();
5568    }
5569out:
5570    return 1;
5571}
5572#endif
5573
5574#ifdef CONFIG_PREEMPT
5575/*
5576 * this is the entry point to schedule() from in-kernel preemption
5577 * off of preempt_enable. Kernel preemptions off return from interrupt
5578 * occur there and call schedule directly.
5579 */
5580asmlinkage void __sched preempt_schedule(void)
5581{
5582    struct thread_info *ti = current_thread_info();
5583
5584    /*
5585     * If there is a non-zero preempt_count or interrupts are disabled,
5586     * we do not want to preempt the current task. Just return..
5587     */
5588    if (likely(ti->preempt_count || irqs_disabled()))
5589        return;
5590
5591    do {
5592        add_preempt_count(PREEMPT_ACTIVE);
5593        schedule();
5594        sub_preempt_count(PREEMPT_ACTIVE);
5595
5596        /*
5597         * Check again in case we missed a preemption opportunity
5598         * between schedule and now.
5599         */
5600        barrier();
5601    } while (need_resched());
5602}
5603EXPORT_SYMBOL(preempt_schedule);
5604
5605/*
5606 * this is the entry point to schedule() from kernel preemption
5607 * off of irq context.
5608 * Note, that this is called and return with irqs disabled. This will
5609 * protect us against recursive calling from irq.
5610 */
5611asmlinkage void __sched preempt_schedule_irq(void)
5612{
5613    struct thread_info *ti = current_thread_info();
5614
5615    /* Catch callers which need to be fixed */
5616    BUG_ON(ti->preempt_count || !irqs_disabled());
5617
5618    do {
5619        add_preempt_count(PREEMPT_ACTIVE);
5620        local_irq_enable();
5621        schedule();
5622        local_irq_disable();
5623        sub_preempt_count(PREEMPT_ACTIVE);
5624
5625        /*
5626         * Check again in case we missed a preemption opportunity
5627         * between schedule and now.
5628         */
5629        barrier();
5630    } while (need_resched());
5631}
5632
5633#endif /* CONFIG_PREEMPT */
5634
5635int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5636              void *key)
5637{
5638    return try_to_wake_up(curr->private, mode, wake_flags);
5639}
5640EXPORT_SYMBOL(default_wake_function);
5641
5642/*
5643 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5644 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5645 * number) then we wake all the non-exclusive tasks and one exclusive task.
5646 *
5647 * There are circumstances in which we can try to wake a task which has already
5648 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5649 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5650 */
5651static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5652            int nr_exclusive, int wake_flags, void *key)
5653{
5654    wait_queue_t *curr, *next;
5655
5656    list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5657        unsigned flags = curr->flags;
5658
5659        if (curr->func(curr, mode, wake_flags, key) &&
5660                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5661            break;
5662    }
5663}
5664
5665/**
5666 * __wake_up - wake up threads blocked on a waitqueue.
5667 * @q: the waitqueue
5668 * @mode: which threads
5669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5670 * @key: is directly passed to the wakeup function
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
5674 */
5675void __wake_up(wait_queue_head_t *q, unsigned int mode,
5676            int nr_exclusive, void *key)
5677{
5678    unsigned long flags;
5679
5680    spin_lock_irqsave(&q->lock, flags);
5681    __wake_up_common(q, mode, nr_exclusive, 0, key);
5682    spin_unlock_irqrestore(&q->lock, flags);
5683}
5684EXPORT_SYMBOL(__wake_up);
5685
5686/*
5687 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5688 */
5689void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5690{
5691    __wake_up_common(q, mode, 1, 0, NULL);
5692}
5693
5694void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5695{
5696    __wake_up_common(q, mode, 1, 0, key);
5697}
5698
5699/**
5700 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5704 * @key: opaque value to be passed to wakeup targets
5705 *
5706 * The sync wakeup differs that the waker knows that it will schedule
5707 * away soon, so while the target thread will be woken up, it will not
5708 * be migrated to another CPU - ie. the two threads are 'synchronized'
5709 * with each other. This can prevent needless bouncing between CPUs.
5710 *
5711 * On UP it can prevent extra preemption.
5712 *
5713 * It may be assumed that this function implies a write memory barrier before
5714 * changing the task state if and only if any tasks are woken up.
5715 */
5716void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5717            int nr_exclusive, void *key)
5718{
5719    unsigned long flags;
5720    int wake_flags = WF_SYNC;
5721
5722    if (unlikely(!q))
5723        return;
5724
5725    if (unlikely(!nr_exclusive))
5726        wake_flags = 0;
5727
5728    spin_lock_irqsave(&q->lock, flags);
5729    __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5730    spin_unlock_irqrestore(&q->lock, flags);
5731}
5732EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5733
5734/*
5735 * __wake_up_sync - see __wake_up_sync_key()
5736 */
5737void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5738{
5739    __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5740}
5741EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5742
5743/**
5744 * complete: - signals a single thread waiting on this completion
5745 * @x: holds the state of this particular completion
5746 *
5747 * This will wake up a single thread waiting on this completion. Threads will be
5748 * awakened in the same order in which they were queued.
5749 *
5750 * See also complete_all(), wait_for_completion() and related routines.
5751 *
5752 * It may be assumed that this function implies a write memory barrier before
5753 * changing the task state if and only if any tasks are woken up.
5754 */
5755void complete(struct completion *x)
5756{
5757    unsigned long flags;
5758
5759    spin_lock_irqsave(&x->wait.lock, flags);
5760    x->done++;
5761    __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5762    spin_unlock_irqrestore(&x->wait.lock, flags);
5763}
5764EXPORT_SYMBOL(complete);
5765
5766/**
5767 * complete_all: - signals all threads waiting on this completion
5768 * @x: holds the state of this particular completion
5769 *
5770 * This will wake up all threads waiting on this particular completion event.
5771 *
5772 * It may be assumed that this function implies a write memory barrier before
5773 * changing the task state if and only if any tasks are woken up.
5774 */
5775void complete_all(struct completion *x)
5776{
5777    unsigned long flags;
5778
5779    spin_lock_irqsave(&x->wait.lock, flags);
5780    x->done += UINT_MAX/2;
5781    __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5782    spin_unlock_irqrestore(&x->wait.lock, flags);
5783}
5784EXPORT_SYMBOL(complete_all);
5785
5786static inline long __sched
5787do_wait_for_common(struct completion *x, long timeout, int state)
5788{
5789    if (!x->done) {
5790        DECLARE_WAITQUEUE(wait, current);
5791
5792        wait.flags |= WQ_FLAG_EXCLUSIVE;
5793        __add_wait_queue_tail(&x->wait, &wait);
5794        do {
5795            if (signal_pending_state(state, current)) {
5796                timeout = -ERESTARTSYS;
5797                break;
5798            }
5799            __set_current_state(state);
5800            spin_unlock_irq(&x->wait.lock);
5801            timeout = schedule_timeout(timeout);
5802            spin_lock_irq(&x->wait.lock);
5803        } while (!x->done && timeout);
5804        __remove_wait_queue(&x->wait, &wait);
5805        if (!x->done)
5806            return timeout;
5807    }
5808    x->done--;
5809    return timeout ?: 1;
5810}
5811
5812static long __sched
5813wait_for_common(struct completion *x, long timeout, int state)
5814{
5815    might_sleep();
5816
5817    spin_lock_irq(&x->wait.lock);
5818    timeout = do_wait_for_common(x, timeout, state);
5819    spin_unlock_irq(&x->wait.lock);
5820    return timeout;
5821}
5822
5823/**
5824 * wait_for_completion: - waits for completion of a task
5825 * @x: holds the state of this particular completion
5826 *
5827 * This waits to be signaled for completion of a specific task. It is NOT
5828 * interruptible and there is no timeout.
5829 *
5830 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5831 * and interrupt capability. Also see complete().
5832 */
5833void __sched wait_for_completion(struct completion *x)
5834{
5835    wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5836}
5837EXPORT_SYMBOL(wait_for_completion);
5838
5839/**
5840 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5841 * @x: holds the state of this particular completion
5842 * @timeout: timeout value in jiffies
5843 *
5844 * This waits for either a completion of a specific task to be signaled or for a
5845 * specified timeout to expire. The timeout is in jiffies. It is not
5846 * interruptible.
5847 */
5848unsigned long __sched
5849wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5850{
5851    return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5852}
5853EXPORT_SYMBOL(wait_for_completion_timeout);
5854
5855/**
5856 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits for completion of a specific task to be signaled. It is
5860 * interruptible.
5861 */
5862int __sched wait_for_completion_interruptible(struct completion *x)
5863{
5864    long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5865    if (t == -ERESTARTSYS)
5866        return t;
5867    return 0;
5868}
5869EXPORT_SYMBOL(wait_for_completion_interruptible);
5870
5871/**
5872 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5878 */
5879unsigned long __sched
5880wait_for_completion_interruptible_timeout(struct completion *x,
5881                      unsigned long timeout)
5882{
5883    return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5884}
5885EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5886
5887/**
5888 * wait_for_completion_killable: - waits for completion of a task (killable)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits to be signaled for completion of a specific task. It can be
5892 * interrupted by a kill signal.
5893 */
5894int __sched wait_for_completion_killable(struct completion *x)
5895{
5896    long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5897    if (t == -ERESTARTSYS)
5898        return t;
5899    return 0;
5900}
5901EXPORT_SYMBOL(wait_for_completion_killable);
5902
5903/**
5904 * try_wait_for_completion - try to decrement a completion without blocking
5905 * @x: completion structure
5906 *
5907 * Returns: 0 if a decrement cannot be done without blocking
5908 * 1 if a decrement succeeded.
5909 *
5910 * If a completion is being used as a counting completion,
5911 * attempt to decrement the counter without blocking. This
5912 * enables us to avoid waiting if the resource the completion
5913 * is protecting is not available.
5914 */
5915bool try_wait_for_completion(struct completion *x)
5916{
5917    int ret = 1;
5918
5919    spin_lock_irq(&x->wait.lock);
5920    if (!x->done)
5921        ret = 0;
5922    else
5923        x->done--;
5924    spin_unlock_irq(&x->wait.lock);
5925    return ret;
5926}
5927EXPORT_SYMBOL(try_wait_for_completion);
5928
5929/**
5930 * completion_done - Test to see if a completion has any waiters
5931 * @x: completion structure
5932 *
5933 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5934 * 1 if there are no waiters.
5935 *
5936 */
5937bool completion_done(struct completion *x)
5938{
5939    int ret = 1;
5940
5941    spin_lock_irq(&x->wait.lock);
5942    if (!x->done)
5943        ret = 0;
5944    spin_unlock_irq(&x->wait.lock);
5945    return ret;
5946}
5947EXPORT_SYMBOL(completion_done);
5948
5949static long __sched
5950sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5951{
5952    unsigned long flags;
5953    wait_queue_t wait;
5954
5955    init_waitqueue_entry(&wait, current);
5956
5957    __set_current_state(state);
5958
5959    spin_lock_irqsave(&q->lock, flags);
5960    __add_wait_queue(q, &wait);
5961    spin_unlock(&q->lock);
5962    timeout = schedule_timeout(timeout);
5963    spin_lock_irq(&q->lock);
5964    __remove_wait_queue(q, &wait);
5965    spin_unlock_irqrestore(&q->lock, flags);
5966
5967    return timeout;
5968}
5969
5970void __sched interruptible_sleep_on(wait_queue_head_t *q)
5971{
5972    sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5973}
5974EXPORT_SYMBOL(interruptible_sleep_on);
5975
5976long __sched
5977interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5978{
5979    return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5980}
5981EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5982
5983void __sched sleep_on(wait_queue_head_t *q)
5984{
5985    sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5986}
5987EXPORT_SYMBOL(sleep_on);
5988
5989long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5990{
5991    return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5992}
5993EXPORT_SYMBOL(sleep_on_timeout);
5994
5995#ifdef CONFIG_RT_MUTEXES
5996
5997/*
5998 * rt_mutex_setprio - set the current priority of a task
5999 * @p: task
6000 * @prio: prio value (kernel-internal form)
6001 *
6002 * This function changes the 'effective' priority of a task. It does
6003 * not touch ->normal_prio like __setscheduler().
6004 *
6005 * Used by the rt_mutex code to implement priority inheritance logic.
6006 */
6007void rt_mutex_setprio(struct task_struct *p, int prio)
6008{
6009    unsigned long flags;
6010    int oldprio, on_rq, running;
6011    struct rq *rq;
6012    const struct sched_class *prev_class;
6013
6014    BUG_ON(prio < 0 || prio > MAX_PRIO);
6015
6016    rq = task_rq_lock(p, &flags);
6017    update_rq_clock(rq);
6018
6019    oldprio = p->prio;
6020    prev_class = p->sched_class;
6021    on_rq = p->se.on_rq;
6022    running = task_current(rq, p);
6023    if (on_rq)
6024        dequeue_task(rq, p, 0);
6025    if (running)
6026        p->sched_class->put_prev_task(rq, p);
6027
6028    if (rt_prio(prio))
6029        p->sched_class = &rt_sched_class;
6030    else
6031        p->sched_class = &fair_sched_class;
6032
6033    p->prio = prio;
6034
6035    if (running)
6036        p->sched_class->set_curr_task(rq);
6037    if (on_rq) {
6038        enqueue_task(rq, p, 0);
6039
6040        check_class_changed(rq, p, prev_class, oldprio, running);
6041    }
6042    task_rq_unlock(rq, &flags);
6043}
6044
6045#endif
6046
6047void set_user_nice(struct task_struct *p, long nice)
6048{
6049    int old_prio, delta, on_rq;
6050    unsigned long flags;
6051    struct rq *rq;
6052
6053    if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6054        return;
6055    /*
6056     * We have to be careful, if called from sys_setpriority(),
6057     * the task might be in the middle of scheduling on another CPU.
6058     */
6059    rq = task_rq_lock(p, &flags);
6060    update_rq_clock(rq);
6061    /*
6062     * The RT priorities are set via sched_setscheduler(), but we still
6063     * allow the 'normal' nice value to be set - but as expected
6064     * it wont have any effect on scheduling until the task is
6065     * SCHED_FIFO/SCHED_RR:
6066     */
6067    if (task_has_rt_policy(p)) {
6068        p->static_prio = NICE_TO_PRIO(nice);
6069        goto out_unlock;
6070    }
6071    on_rq = p->se.on_rq;
6072    if (on_rq)
6073        dequeue_task(rq, p, 0);
6074
6075    p->static_prio = NICE_TO_PRIO(nice);
6076    set_load_weight(p);
6077    old_prio = p->prio;
6078    p->prio = effective_prio(p);
6079    delta = p->prio - old_prio;
6080
6081    if (on_rq) {
6082        enqueue_task(rq, p, 0);
6083        /*
6084         * If the task increased its priority or is running and
6085         * lowered its priority, then reschedule its CPU:
6086         */
6087        if (delta < 0 || (delta > 0 && task_running(rq, p)))
6088            resched_task(rq->curr);
6089    }
6090out_unlock:
6091    task_rq_unlock(rq, &flags);
6092}
6093EXPORT_SYMBOL(set_user_nice);
6094
6095/*
6096 * can_nice - check if a task can reduce its nice value
6097 * @p: task
6098 * @nice: nice value
6099 */
6100int can_nice(const struct task_struct *p, const int nice)
6101{
6102    /* convert nice value [19,-20] to rlimit style value [1,40] */
6103    int nice_rlim = 20 - nice;
6104
6105    return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6106        capable(CAP_SYS_NICE));
6107}
6108EXPORT_SYMBOL_GPL(can_nice);
6109
6110#ifdef __ARCH_WANT_SYS_NICE
6111
6112/*
6113 * sys_nice - change the priority of the current process.
6114 * @increment: priority increment
6115 *
6116 * sys_setpriority is a more generic, but much slower function that
6117 * does similar things.
6118 */
6119SYSCALL_DEFINE1(nice, int, increment)
6120{
6121    long nice, retval;
6122
6123    /*
6124     * Setpriority might change our priority at the same moment.
6125     * We don't have to worry. Conceptually one call occurs first
6126     * and we have a single winner.
6127     */
6128    if (increment < -40)
6129        increment = -40;
6130    if (increment > 40)
6131        increment = 40;
6132
6133    nice = TASK_NICE(current) + increment;
6134    if (nice < -20)
6135        nice = -20;
6136    if (nice > 19)
6137        nice = 19;
6138
6139    if (increment < 0 && !can_nice(current, nice))
6140        return -EPERM;
6141
6142    retval = security_task_setnice(current, nice);
6143    if (retval)
6144        return retval;
6145
6146    set_user_nice(current, nice);
6147    return 0;
6148}
6149
6150#endif
6151
6152/**
6153 * task_prio - return the priority value of a given task.
6154 * @p: the task in question.
6155 *
6156 * This is the priority value as seen by users in /proc.
6157 * RT tasks are offset by -200. Normal tasks are centered
6158 * around 0, value goes from -16 to +15.
6159 */
6160int task_prio(const struct task_struct *p)
6161{
6162    return p->prio - MAX_RT_PRIO;
6163}
6164
6165/**
6166 * task_nice - return the nice value of a given task.
6167 * @p: the task in question.
6168 */
6169int task_nice(const struct task_struct *p)
6170{
6171    return TASK_NICE(p);
6172}
6173EXPORT_SYMBOL(task_nice);
6174
6175/**
6176 * idle_cpu - is a given cpu idle currently?
6177 * @cpu: the processor in question.
6178 */
6179int idle_cpu(int cpu)
6180{
6181    return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6182}
6183
6184/**
6185 * idle_task - return the idle task for a given cpu.
6186 * @cpu: the processor in question.
6187 */
6188struct task_struct *idle_task(int cpu)
6189{
6190    return cpu_rq(cpu)->idle;
6191}
6192
6193/**
6194 * find_process_by_pid - find a process with a matching PID value.
6195 * @pid: the pid in question.
6196 */
6197static struct task_struct *find_process_by_pid(pid_t pid)
6198{
6199    return pid ? find_task_by_vpid(pid) : current;
6200}
6201
6202/* Actually do priority change: must hold rq lock. */
6203static void
6204__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6205{
6206    BUG_ON(p->se.on_rq);
6207
6208    p->policy = policy;
6209    switch (p->policy) {
6210    case SCHED_NORMAL:
6211    case SCHED_BATCH:
6212    case SCHED_IDLE:
6213        p->sched_class = &fair_sched_class;
6214        break;
6215    case SCHED_FIFO:
6216    case SCHED_RR:
6217        p->sched_class = &rt_sched_class;
6218        break;
6219    }
6220
6221    p->rt_priority = prio;
6222    p->normal_prio = normal_prio(p);
6223    /* we are holding p->pi_lock already */
6224    p->prio = rt_mutex_getprio(p);
6225    set_load_weight(p);
6226}
6227
6228/*
6229 * check the target process has a UID that matches the current process's
6230 */
6231static bool check_same_owner(struct task_struct *p)
6232{
6233    const struct cred *cred = current_cred(), *pcred;
6234    bool match;
6235
6236    rcu_read_lock();
6237    pcred = __task_cred(p);
6238    match = (cred->euid == pcred->euid ||
6239         cred->euid == pcred->uid);
6240    rcu_read_unlock();
6241    return match;
6242}
6243
6244static int __sched_setscheduler(struct task_struct *p, int policy,
6245                struct sched_param *param, bool user)
6246{
6247    int retval, oldprio, oldpolicy = -1, on_rq, running;
6248    unsigned long flags;
6249    const struct sched_class *prev_class;
6250    struct rq *rq;
6251    int reset_on_fork;
6252
6253    /* may grab non-irq protected spin_locks */
6254    BUG_ON(in_interrupt());
6255recheck:
6256    /* double check policy once rq lock held */
6257    if (policy < 0) {
6258        reset_on_fork = p->sched_reset_on_fork;
6259        policy = oldpolicy = p->policy;
6260    } else {
6261        reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6262        policy &= ~SCHED_RESET_ON_FORK;
6263
6264        if (policy != SCHED_FIFO && policy != SCHED_RR &&
6265                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6266                policy != SCHED_IDLE)
6267            return -EINVAL;
6268    }
6269
6270    /*
6271     * Valid priorities for SCHED_FIFO and SCHED_RR are
6272     * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6273     * SCHED_BATCH and SCHED_IDLE is 0.
6274     */
6275    if (param->sched_priority < 0 ||
6276        (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6277        (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6278        return -EINVAL;
6279    if (rt_policy(policy) != (param->sched_priority != 0))
6280        return -EINVAL;
6281
6282    /*
6283     * Allow unprivileged RT tasks to decrease priority:
6284     */
6285    if (user && !capable(CAP_SYS_NICE)) {
6286        if (rt_policy(policy)) {
6287            unsigned long rlim_rtprio;
6288
6289            if (!lock_task_sighand(p, &flags))
6290                return -ESRCH;
6291            rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6292            unlock_task_sighand(p, &flags);
6293
6294            /* can't set/change the rt policy */
6295            if (policy != p->policy && !rlim_rtprio)
6296                return -EPERM;
6297
6298            /* can't increase priority */
6299            if (param->sched_priority > p->rt_priority &&
6300                param->sched_priority > rlim_rtprio)
6301                return -EPERM;
6302        }
6303        /*
6304         * Like positive nice levels, dont allow tasks to
6305         * move out of SCHED_IDLE either:
6306         */
6307        if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6308            return -EPERM;
6309
6310        /* can't change other user's priorities */
6311        if (!check_same_owner(p))
6312            return -EPERM;
6313
6314        /* Normal users shall not reset the sched_reset_on_fork flag */
6315        if (p->sched_reset_on_fork && !reset_on_fork)
6316            return -EPERM;
6317    }
6318
6319    if (user) {
6320#ifdef CONFIG_RT_GROUP_SCHED
6321        /*
6322         * Do not allow realtime tasks into groups that have no runtime
6323         * assigned.
6324         */
6325        if (rt_bandwidth_enabled() && rt_policy(policy) &&
6326                task_group(p)->rt_bandwidth.rt_runtime == 0)
6327            return -EPERM;
6328#endif
6329
6330        retval = security_task_setscheduler(p, policy, param);
6331        if (retval)
6332            return retval;
6333    }
6334
6335    /*
6336     * make sure no PI-waiters arrive (or leave) while we are
6337     * changing the priority of the task:
6338     */
6339    spin_lock_irqsave(&p->pi_lock, flags);
6340    /*
6341     * To be able to change p->policy safely, the apropriate
6342     * runqueue lock must be held.
6343     */
6344    rq = __task_rq_lock(p);
6345    /* recheck policy now with rq lock held */
6346    if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6347        policy = oldpolicy = -1;
6348        __task_rq_unlock(rq);
6349        spin_unlock_irqrestore(&p->pi_lock, flags);
6350        goto recheck;
6351    }
6352    update_rq_clock(rq);
6353    on_rq = p->se.on_rq;
6354    running = task_current(rq, p);
6355    if (on_rq)
6356        deactivate_task(rq, p, 0);
6357    if (running)
6358        p->sched_class->put_prev_task(rq, p);
6359
6360    p->sched_reset_on_fork = reset_on_fork;
6361
6362    oldprio = p->prio;
6363    prev_class = p->sched_class;
6364    __setscheduler(rq, p, policy, param->sched_priority);
6365
6366    if (running)
6367        p->sched_class->set_curr_task(rq);
6368    if (on_rq) {
6369        activate_task(rq, p, 0);
6370
6371        check_class_changed(rq, p, prev_class, oldprio, running);
6372    }
6373    __task_rq_unlock(rq);
6374    spin_unlock_irqrestore(&p->pi_lock, flags);
6375
6376    rt_mutex_adjust_pi(p);
6377
6378    return 0;
6379}
6380
6381/**
6382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6383 * @p: the task in question.
6384 * @policy: new policy.
6385 * @param: structure containing the new RT priority.
6386 *
6387 * NOTE that the task may be already dead.
6388 */
6389int sched_setscheduler(struct task_struct *p, int policy,
6390               struct sched_param *param)
6391{
6392    return __sched_setscheduler(p, policy, param, true);
6393}
6394EXPORT_SYMBOL_GPL(sched_setscheduler);
6395
6396/**
6397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6398 * @p: the task in question.
6399 * @policy: new policy.
6400 * @param: structure containing the new RT priority.
6401 *
6402 * Just like sched_setscheduler, only don't bother checking if the
6403 * current context has permission. For example, this is needed in
6404 * stop_machine(): we create temporary high priority worker threads,
6405 * but our caller might not have that capability.
6406 */
6407int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6408                   struct sched_param *param)
6409{
6410    return __sched_setscheduler(p, policy, param, false);
6411}
6412
6413static int
6414do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6415{
6416    struct sched_param lparam;
6417    struct task_struct *p;
6418    int retval;
6419
6420    if (!param || pid < 0)
6421        return -EINVAL;
6422    if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6423        return -EFAULT;
6424
6425    rcu_read_lock();
6426    retval = -ESRCH;
6427    p = find_process_by_pid(pid);
6428    if (p != NULL)
6429        retval = sched_setscheduler(p, policy, &lparam);
6430    rcu_read_unlock();
6431
6432    return retval;
6433}
6434
6435/**
6436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6437 * @pid: the pid in question.
6438 * @policy: new policy.
6439 * @param: structure containing the new RT priority.
6440 */
6441SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6442        struct sched_param __user *, param)
6443{
6444    /* negative values for policy are not valid */
6445    if (policy < 0)
6446        return -EINVAL;
6447
6448    return do_sched_setscheduler(pid, policy, param);
6449}
6450
6451/**
6452 * sys_sched_setparam - set/change the RT priority of a thread
6453 * @pid: the pid in question.
6454 * @param: structure containing the new RT priority.
6455 */
6456SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6457{
6458    return do_sched_setscheduler(pid, -1, param);
6459}
6460
6461/**
6462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6463 * @pid: the pid in question.
6464 */
6465SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6466{
6467    struct task_struct *p;
6468    int retval;
6469
6470    if (pid < 0)
6471        return -EINVAL;
6472
6473    retval = -ESRCH;
6474    read_lock(&tasklist_lock);
6475    p = find_process_by_pid(pid);
6476    if (p) {
6477        retval = security_task_getscheduler(p);
6478        if (!retval)
6479            retval = p->policy
6480                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6481    }
6482    read_unlock(&tasklist_lock);
6483    return retval;
6484}
6485
6486/**
6487 * sys_sched_getparam - get the RT priority of a thread
6488 * @pid: the pid in question.
6489 * @param: structure containing the RT priority.
6490 */
6491SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6492{
6493    struct sched_param lp;
6494    struct task_struct *p;
6495    int retval;
6496
6497    if (!param || pid < 0)
6498        return -EINVAL;
6499
6500    read_lock(&tasklist_lock);
6501    p = find_process_by_pid(pid);
6502    retval = -ESRCH;
6503    if (!p)
6504        goto out_unlock;
6505
6506    retval = security_task_getscheduler(p);
6507    if (retval)
6508        goto out_unlock;
6509
6510    lp.sched_priority = p->rt_priority;
6511    read_unlock(&tasklist_lock);
6512
6513    /*
6514     * This one might sleep, we cannot do it with a spinlock held ...
6515     */
6516    retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6517
6518    return retval;
6519
6520out_unlock:
6521    read_unlock(&tasklist_lock);
6522    return retval;
6523}
6524
6525long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6526{
6527    cpumask_var_t cpus_allowed, new_mask;
6528    struct task_struct *p;
6529    int retval;
6530
6531    get_online_cpus();
6532    read_lock(&tasklist_lock);
6533
6534    p = find_process_by_pid(pid);
6535    if (!p) {
6536        read_unlock(&tasklist_lock);
6537        put_online_cpus();
6538        return -ESRCH;
6539    }
6540
6541    /*
6542     * It is not safe to call set_cpus_allowed with the
6543     * tasklist_lock held. We will bump the task_struct's
6544     * usage count and then drop tasklist_lock.
6545     */
6546    get_task_struct(p);
6547    read_unlock(&tasklist_lock);
6548
6549    if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6550        retval = -ENOMEM;
6551        goto out_put_task;
6552    }
6553    if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6554        retval = -ENOMEM;
6555        goto out_free_cpus_allowed;
6556    }
6557    retval = -EPERM;
6558    if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6559        goto out_unlock;
6560
6561    retval = security_task_setscheduler(p, 0, NULL);
6562    if (retval)
6563        goto out_unlock;
6564
6565    cpuset_cpus_allowed(p, cpus_allowed);
6566    cpumask_and(new_mask, in_mask, cpus_allowed);
6567 again:
6568    retval = set_cpus_allowed_ptr(p, new_mask);
6569
6570    if (!retval) {
6571        cpuset_cpus_allowed(p, cpus_allowed);
6572        if (!cpumask_subset(new_mask, cpus_allowed)) {
6573            /*
6574             * We must have raced with a concurrent cpuset
6575             * update. Just reset the cpus_allowed to the
6576             * cpuset's cpus_allowed
6577             */
6578            cpumask_copy(new_mask, cpus_allowed);
6579            goto again;
6580        }
6581    }
6582out_unlock:
6583    free_cpumask_var(new_mask);
6584out_free_cpus_allowed:
6585    free_cpumask_var(cpus_allowed);
6586out_put_task:
6587    put_task_struct(p);
6588    put_online_cpus();
6589    return retval;
6590}
6591
6592static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6593                 struct cpumask *new_mask)
6594{
6595    if (len < cpumask_size())
6596        cpumask_clear(new_mask);
6597    else if (len > cpumask_size())
6598        len = cpumask_size();
6599
6600    return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6601}
6602
6603/**
6604 * sys_sched_setaffinity - set the cpu affinity of a process
6605 * @pid: pid of the process
6606 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6607 * @user_mask_ptr: user-space pointer to the new cpu mask
6608 */
6609SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6610        unsigned long __user *, user_mask_ptr)
6611{
6612    cpumask_var_t new_mask;
6613    int retval;
6614
6615    if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6616        return -ENOMEM;
6617
6618    retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6619    if (retval == 0)
6620        retval = sched_setaffinity(pid, new_mask);
6621    free_cpumask_var(new_mask);
6622    return retval;
6623}
6624
6625long sched_getaffinity(pid_t pid, struct cpumask *mask)
6626{
6627    struct task_struct *p;
6628    int retval;
6629
6630    get_online_cpus();
6631    read_lock(&tasklist_lock);
6632
6633    retval = -ESRCH;
6634    p = find_process_by_pid(pid);
6635    if (!p)
6636        goto out_unlock;
6637
6638    retval = security_task_getscheduler(p);
6639    if (retval)
6640        goto out_unlock;
6641
6642    cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6643
6644out_unlock:
6645    read_unlock(&tasklist_lock);
6646    put_online_cpus();
6647
6648    return retval;
6649}
6650
6651/**
6652 * sys_sched_getaffinity - get the cpu affinity of a process
6653 * @pid: pid of the process
6654 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6655 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6656 */
6657SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6658        unsigned long __user *, user_mask_ptr)
6659{
6660    int ret;
6661    cpumask_var_t mask;
6662
6663    if (len < cpumask_size())
6664        return -EINVAL;
6665
6666    if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6667        return -ENOMEM;
6668
6669    ret = sched_getaffinity(pid, mask);
6670    if (ret == 0) {
6671        if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6672            ret = -EFAULT;
6673        else
6674            ret = cpumask_size();
6675    }
6676    free_cpumask_var(mask);
6677
6678    return ret;
6679}
6680
6681/**
6682 * sys_sched_yield - yield the current processor to other threads.
6683 *
6684 * This function yields the current CPU to other tasks. If there are no
6685 * other threads running on this CPU then this function will return.
6686 */
6687SYSCALL_DEFINE0(sched_yield)
6688{
6689    struct rq *rq = this_rq_lock();
6690
6691    schedstat_inc(rq, yld_count);
6692    current->sched_class->yield_task(rq);
6693
6694    /*
6695     * Since we are going to call schedule() anyway, there's
6696     * no need to preempt or enable interrupts:
6697     */
6698    __release(rq->lock);
6699    spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6700    _raw_spin_unlock(&rq->lock);
6701    preempt_enable_no_resched();
6702
6703    schedule();
6704
6705    return 0;
6706}
6707
6708static inline int should_resched(void)
6709{
6710    return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6711}
6712
6713static void __cond_resched(void)
6714{
6715    add_preempt_count(PREEMPT_ACTIVE);
6716    schedule();
6717    sub_preempt_count(PREEMPT_ACTIVE);
6718}
6719
6720int __sched _cond_resched(void)
6721{
6722    if (should_resched()) {
6723        __cond_resched();
6724        return 1;
6725    }
6726    return 0;
6727}
6728EXPORT_SYMBOL(_cond_resched);
6729
6730/*
6731 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6732 * call schedule, and on return reacquire the lock.
6733 *
6734 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6735 * operations here to prevent schedule() from being called twice (once via
6736 * spin_unlock(), once by hand).
6737 */
6738int __cond_resched_lock(spinlock_t *lock)
6739{
6740    int resched = should_resched();
6741    int ret = 0;
6742
6743    lockdep_assert_held(lock);
6744
6745    if (spin_needbreak(lock) || resched) {
6746        spin_unlock(lock);
6747        if (resched)
6748            __cond_resched();
6749        else
6750            cpu_relax();
6751        ret = 1;
6752        spin_lock(lock);
6753    }
6754    return ret;
6755}
6756EXPORT_SYMBOL(__cond_resched_lock);
6757
6758int __sched __cond_resched_softirq(void)
6759{
6760    BUG_ON(!in_softirq());
6761
6762    if (should_resched()) {
6763        local_bh_enable();
6764        __cond_resched();
6765        local_bh_disable();
6766        return 1;
6767    }
6768    return 0;
6769}
6770EXPORT_SYMBOL(__cond_resched_softirq);
6771
6772/**
6773 * yield - yield the current processor to other threads.
6774 *
6775 * This is a shortcut for kernel-space yielding - it marks the
6776 * thread runnable and calls sys_sched_yield().
6777 */
6778void __sched yield(void)
6779{
6780    set_current_state(TASK_RUNNING);
6781    sys_sched_yield();
6782}
6783EXPORT_SYMBOL(yield);
6784
6785/*
6786 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6787 * that process accounting knows that this is a task in IO wait state.
6788 */
6789void __sched io_schedule(void)
6790{
6791    struct rq *rq = raw_rq();
6792
6793    delayacct_blkio_start();
6794    atomic_inc(&rq->nr_iowait);
6795    current->in_iowait = 1;
6796    schedule();
6797    current->in_iowait = 0;
6798    atomic_dec(&rq->nr_iowait);
6799    delayacct_blkio_end();
6800}
6801EXPORT_SYMBOL(io_schedule);
6802
6803long __sched io_schedule_timeout(long timeout)
6804{
6805    struct rq *rq = raw_rq();
6806    long ret;
6807
6808    delayacct_blkio_start();
6809    atomic_inc(&rq->nr_iowait);
6810    current->in_iowait = 1;
6811    ret = schedule_timeout(timeout);
6812    current->in_iowait = 0;
6813    atomic_dec(&rq->nr_iowait);
6814    delayacct_blkio_end();
6815    return ret;
6816}
6817
6818/**
6819 * sys_sched_get_priority_max - return maximum RT priority.
6820 * @policy: scheduling class.
6821 *
6822 * this syscall returns the maximum rt_priority that can be used
6823 * by a given scheduling class.
6824 */
6825SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6826{
6827    int ret = -EINVAL;
6828
6829    switch (policy) {
6830    case SCHED_FIFO:
6831    case SCHED_RR:
6832        ret = MAX_USER_RT_PRIO-1;
6833        break;
6834    case SCHED_NORMAL:
6835    case SCHED_BATCH:
6836    case SCHED_IDLE:
6837        ret = 0;
6838        break;
6839    }
6840    return ret;
6841}
6842
6843/**
6844 * sys_sched_get_priority_min - return minimum RT priority.
6845 * @policy: scheduling class.
6846 *
6847 * this syscall returns the minimum rt_priority that can be used
6848 * by a given scheduling class.
6849 */
6850SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6851{
6852    int ret = -EINVAL;
6853
6854    switch (policy) {
6855    case SCHED_FIFO:
6856    case SCHED_RR:
6857        ret = 1;
6858        break;
6859    case SCHED_NORMAL:
6860    case SCHED_BATCH:
6861    case SCHED_IDLE:
6862        ret = 0;
6863    }
6864    return ret;
6865}
6866
6867/**
6868 * sys_sched_rr_get_interval - return the default timeslice of a process.
6869 * @pid: pid of the process.
6870 * @interval: userspace pointer to the timeslice value.
6871 *
6872 * this syscall writes the default timeslice value of a given process
6873 * into the user-space timespec buffer. A value of '0' means infinity.
6874 */
6875SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6876        struct timespec __user *, interval)
6877{
6878    struct task_struct *p;
6879    unsigned int time_slice;
6880    int retval;
6881    struct timespec t;
6882
6883    if (pid < 0)
6884        return -EINVAL;
6885
6886    retval = -ESRCH;
6887    read_lock(&tasklist_lock);
6888    p = find_process_by_pid(pid);
6889    if (!p)
6890        goto out_unlock;
6891
6892    retval = security_task_getscheduler(p);
6893    if (retval)
6894        goto out_unlock;
6895
6896    time_slice = p->sched_class->get_rr_interval(p);
6897
6898    read_unlock(&tasklist_lock);
6899    jiffies_to_timespec(time_slice, &t);
6900    retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6901    return retval;
6902
6903out_unlock:
6904    read_unlock(&tasklist_lock);
6905    return retval;
6906}
6907
6908static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6909
6910void sched_show_task(struct task_struct *p)
6911{
6912    unsigned long free = 0;
6913    unsigned state;
6914
6915    state = p->state ? __ffs(p->state) + 1 : 0;
6916    printk(KERN_INFO "%-13.13s %c", p->comm,
6917        state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6918#if BITS_PER_LONG == 32
6919    if (state == TASK_RUNNING)
6920        printk(KERN_CONT " running ");
6921    else
6922        printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6923#else
6924    if (state == TASK_RUNNING)
6925        printk(KERN_CONT " running task ");
6926    else
6927        printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6928#endif
6929#ifdef CONFIG_DEBUG_STACK_USAGE
6930    free = stack_not_used(p);
6931#endif
6932    printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6933        task_pid_nr(p), task_pid_nr(p->real_parent),
6934        (unsigned long)task_thread_info(p)->flags);
6935
6936    show_stack(p, NULL);
6937}
6938
6939void show_state_filter(unsigned long state_filter)
6940{
6941    struct task_struct *g, *p;
6942
6943#if BITS_PER_LONG == 32
6944    printk(KERN_INFO
6945        " task PC stack pid father\n");
6946#else
6947    printk(KERN_INFO
6948        " task PC stack pid father\n");
6949#endif
6950    read_lock(&tasklist_lock);
6951    do_each_thread(g, p) {
6952        /*
6953         * reset the NMI-timeout, listing all files on a slow
6954         * console might take alot of time:
6955         */
6956        touch_nmi_watchdog();
6957        if (!state_filter || (p->state & state_filter))
6958            sched_show_task(p);
6959    } while_each_thread(g, p);
6960
6961    touch_all_softlockup_watchdogs();
6962
6963#ifdef CONFIG_SCHED_DEBUG
6964    sysrq_sched_debug_show();
6965#endif
6966    read_unlock(&tasklist_lock);
6967    /*
6968     * Only show locks if all tasks are dumped:
6969     */
6970    if (state_filter == -1)
6971        debug_show_all_locks();
6972}
6973
6974void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6975{
6976    idle->sched_class = &idle_sched_class;
6977}
6978
6979/**
6980 * init_idle - set up an idle thread for a given CPU
6981 * @idle: task in question
6982 * @cpu: cpu the idle task belongs to
6983 *
6984 * NOTE: this function does not set the idle thread's NEED_RESCHED
6985 * flag, to make booting more robust.
6986 */
6987void __cpuinit init_idle(struct task_struct *idle, int cpu)
6988{
6989    struct rq *rq = cpu_rq(cpu);
6990    unsigned long flags;
6991
6992    spin_lock_irqsave(&rq->lock, flags);
6993
6994    __sched_fork(idle);
6995    idle->se.exec_start = sched_clock();
6996
6997    cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6998    __set_task_cpu(idle, cpu);
6999
7000    rq->curr = rq->idle = idle;
7001#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7002    idle->oncpu = 1;
7003#endif
7004    spin_unlock_irqrestore(&rq->lock, flags);
7005
7006    /* Set the preempt count _outside_ the spinlocks! */
7007#if defined(CONFIG_PREEMPT)
7008    task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7009#else
7010    task_thread_info(idle)->preempt_count = 0;
7011#endif
7012    /*
7013     * The idle tasks have their own, simple scheduling class:
7014     */
7015    idle->sched_class = &idle_sched_class;
7016    ftrace_graph_init_task(idle);
7017}
7018
7019/*
7020 * In a system that switches off the HZ timer nohz_cpu_mask
7021 * indicates which cpus entered this state. This is used
7022 * in the rcu update to wait only for active cpus. For system
7023 * which do not switch off the HZ timer nohz_cpu_mask should
7024 * always be CPU_BITS_NONE.
7025 */
7026cpumask_var_t nohz_cpu_mask;
7027
7028/*
7029 * Increase the granularity value when there are more CPUs,
7030 * because with more CPUs the 'effective latency' as visible
7031 * to users decreases. But the relationship is not linear,
7032 * so pick a second-best guess by going with the log2 of the
7033 * number of CPUs.
7034 *
7035 * This idea comes from the SD scheduler of Con Kolivas:
7036 */
7037static void update_sysctl(void)
7038{
7039    unsigned int cpus = min(num_online_cpus(), 8U);
7040    unsigned int factor = 1 + ilog2(cpus);
7041
7042#define SET_SYSCTL(name) \
7043    (sysctl_##name = (factor) * normalized_sysctl_##name)
7044    SET_SYSCTL(sched_min_granularity);
7045    SET_SYSCTL(sched_latency);
7046    SET_SYSCTL(sched_wakeup_granularity);
7047    SET_SYSCTL(sched_shares_ratelimit);
7048#undef SET_SYSCTL
7049}
7050
7051static inline void sched_init_granularity(void)
7052{
7053    update_sysctl();
7054}
7055
7056#ifdef CONFIG_SMP
7057/*
7058 * This is how migration works:
7059 *
7060 * 1) we queue a struct migration_req structure in the source CPU's
7061 * runqueue and wake up that CPU's migration thread.
7062 * 2) we down() the locked semaphore => thread blocks.
7063 * 3) migration thread wakes up (implicitly it forces the migrated
7064 * thread off the CPU)
7065 * 4) it gets the migration request and checks whether the migrated
7066 * task is still in the wrong runqueue.
7067 * 5) if it's in the wrong runqueue then the migration thread removes
7068 * it and puts it into the right queue.
7069 * 6) migration thread up()s the semaphore.
7070 * 7) we wake up and the migration is done.
7071 */
7072
7073/*
7074 * Change a given task's CPU affinity. Migrate the thread to a
7075 * proper CPU and schedule it away if the CPU it's executing on
7076 * is removed from the allowed bitmask.
7077 *
7078 * NOTE: the caller must have a valid reference to the task, the
7079 * task must not exit() & deallocate itself prematurely. The
7080 * call is not atomic; no spinlocks may be held.
7081 */
7082int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7083{
7084    struct migration_req req;
7085    unsigned long flags;
7086    struct rq *rq;
7087    int ret = 0;
7088
7089    rq = task_rq_lock(p, &flags);
7090    if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7091        ret = -EINVAL;
7092        goto out;
7093    }
7094
7095    if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7096             !cpumask_equal(&p->cpus_allowed, new_mask))) {
7097        ret = -EINVAL;
7098        goto out;
7099    }
7100
7101    if (p->sched_class->set_cpus_allowed)
7102        p->sched_class->set_cpus_allowed(p, new_mask);
7103    else {
7104        cpumask_copy(&p->cpus_allowed, new_mask);
7105        p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7106    }
7107
7108    /* Can the task run on the task's current CPU? If so, we're done */
7109    if (cpumask_test_cpu(task_cpu(p), new_mask))
7110        goto out;
7111
7112    if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7113        /* Need help from migration thread: drop lock and wait. */
7114        struct task_struct *mt = rq->migration_thread;
7115
7116        get_task_struct(mt);
7117        task_rq_unlock(rq, &flags);
7118        wake_up_process(rq->migration_thread);
7119        put_task_struct(mt);
7120        wait_for_completion(&req.done);
7121        tlb_migrate_finish(p->mm);
7122        return 0;
7123    }
7124out:
7125    task_rq_unlock(rq, &flags);
7126
7127    return ret;
7128}
7129EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7130
7131/*
7132 * Move (not current) task off this cpu, onto dest cpu. We're doing
7133 * this because either it can't run here any more (set_cpus_allowed()
7134 * away from this CPU, or CPU going down), or because we're
7135 * attempting to rebalance this task on exec (sched_exec).
7136 *
7137 * So we race with normal scheduler movements, but that's OK, as long
7138 * as the task is no longer on this CPU.
7139 *
7140 * Returns non-zero if task was successfully migrated.
7141 */
7142static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7143{
7144    struct rq *rq_dest, *rq_src;
7145    int ret = 0, on_rq;
7146
7147    if (unlikely(!cpu_active(dest_cpu)))
7148        return ret;
7149
7150    rq_src = cpu_rq(src_cpu);
7151    rq_dest = cpu_rq(dest_cpu);
7152
7153    double_rq_lock(rq_src, rq_dest);
7154    /* Already moved. */
7155    if (task_cpu(p) != src_cpu)
7156        goto done;
7157    /* Affinity changed (again). */
7158    if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7159        goto fail;
7160
7161    on_rq = p->se.on_rq;
7162    if (on_rq)
7163        deactivate_task(rq_src, p, 0);
7164
7165    set_task_cpu(p, dest_cpu);
7166    if (on_rq) {
7167        activate_task(rq_dest, p, 0);
7168        check_preempt_curr(rq_dest, p, 0);
7169    }
7170done:
7171    ret = 1;
7172fail:
7173    double_rq_unlock(rq_src, rq_dest);
7174    return ret;
7175}
7176
7177#define RCU_MIGRATION_IDLE 0
7178#define RCU_MIGRATION_NEED_QS 1
7179#define RCU_MIGRATION_GOT_QS 2
7180#define RCU_MIGRATION_MUST_SYNC 3
7181
7182/*
7183 * migration_thread - this is a highprio system thread that performs
7184 * thread migration by bumping thread off CPU then 'pushing' onto
7185 * another runqueue.
7186 */
7187static int migration_thread(void *data)
7188{
7189    int badcpu;
7190    int cpu = (long)data;
7191    struct rq *rq;
7192
7193    rq = cpu_rq(cpu);
7194    BUG_ON(rq->migration_thread != current);
7195
7196    set_current_state(TASK_INTERRUPTIBLE);
7197    while (!kthread_should_stop()) {
7198        struct migration_req *req;
7199        struct list_head *head;
7200
7201        spin_lock_irq(&rq->lock);
7202
7203        if (cpu_is_offline(cpu)) {
7204            spin_unlock_irq(&rq->lock);
7205            break;
7206        }
7207
7208        if (rq->active_balance) {
7209            active_load_balance(rq, cpu);
7210            rq->active_balance = 0;
7211        }
7212
7213        head = &rq->migration_queue;
7214
7215        if (list_empty(head)) {
7216            spin_unlock_irq(&rq->lock);
7217            schedule();
7218            set_current_state(TASK_INTERRUPTIBLE);
7219            continue;
7220        }
7221        req = list_entry(head->next, struct migration_req, list);
7222        list_del_init(head->next);
7223
7224        if (req->task != NULL) {
7225            spin_unlock(&rq->lock);
7226            __migrate_task(req->task, cpu, req->dest_cpu);
7227        } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7228            req->dest_cpu = RCU_MIGRATION_GOT_QS;
7229            spin_unlock(&rq->lock);
7230        } else {
7231            req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7232            spin_unlock(&rq->lock);
7233            WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7234        }
7235        local_irq_enable();
7236
7237        complete(&req->done);
7238    }
7239    __set_current_state(TASK_RUNNING);
7240
7241    return 0;
7242}
7243
7244#ifdef CONFIG_HOTPLUG_CPU
7245
7246static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7247{
7248    int ret;
7249
7250    local_irq_disable();
7251    ret = __migrate_task(p, src_cpu, dest_cpu);
7252    local_irq_enable();
7253    return ret;
7254}
7255
7256/*
7257 * Figure out where task on dead CPU should go, use force if necessary.
7258 */
7259static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7260{
7261    int dest_cpu;
7262    const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7263
7264again:
7265    /* Look for allowed, online CPU in same node. */
7266    for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7267        if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7268            goto move;
7269
7270    /* Any allowed, online CPU? */
7271    dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7272    if (dest_cpu < nr_cpu_ids)
7273        goto move;
7274
7275    /* No more Mr. Nice Guy. */
7276    if (dest_cpu >= nr_cpu_ids) {
7277        cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7278        dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7279
7280        /*
7281         * Don't tell them about moving exiting tasks or
7282         * kernel threads (both mm NULL), since they never
7283         * leave kernel.
7284         */
7285        if (p->mm && printk_ratelimit()) {
7286            printk(KERN_INFO "process %d (%s) no "
7287                   "longer affine to cpu%d\n",
7288                   task_pid_nr(p), p->comm, dead_cpu);
7289        }
7290    }
7291
7292move:
7293    /* It can have affinity changed while we were choosing. */
7294    if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7295        goto again;
7296}
7297
7298/*
7299 * While a dead CPU has no uninterruptible tasks queued at this point,
7300 * it might still have a nonzero ->nr_uninterruptible counter, because
7301 * for performance reasons the counter is not stricly tracking tasks to
7302 * their home CPUs. So we just add the counter to another CPU's counter,
7303 * to keep the global sum constant after CPU-down:
7304 */
7305static void migrate_nr_uninterruptible(struct rq *rq_src)
7306{
7307    struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7308    unsigned long flags;
7309
7310    local_irq_save(flags);
7311    double_rq_lock(rq_src, rq_dest);
7312    rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7313    rq_src->nr_uninterruptible = 0;
7314    double_rq_unlock(rq_src, rq_dest);
7315    local_irq_restore(flags);
7316}
7317
7318/* Run through task list and migrate tasks from the dead cpu. */
7319static void migrate_live_tasks(int src_cpu)
7320{
7321    struct task_struct *p, *t;
7322
7323    read_lock(&tasklist_lock);
7324
7325    do_each_thread(t, p) {
7326        if (p == current)
7327            continue;
7328
7329        if (task_cpu(p) == src_cpu)
7330            move_task_off_dead_cpu(src_cpu, p);
7331    } while_each_thread(t, p);
7332
7333    read_unlock(&tasklist_lock);
7334}
7335
7336/*
7337 * Schedules idle task to be the next runnable task on current CPU.
7338 * It does so by boosting its priority to highest possible.
7339 * Used by CPU offline code.
7340 */
7341void sched_idle_next(void)
7342{
7343    int this_cpu = smp_processor_id();
7344    struct rq *rq = cpu_rq(this_cpu);
7345    struct task_struct *p = rq->idle;
7346    unsigned long flags;
7347
7348    /* cpu has to be offline */
7349    BUG_ON(cpu_online(this_cpu));
7350
7351    /*
7352     * Strictly not necessary since rest of the CPUs are stopped by now
7353     * and interrupts disabled on the current cpu.
7354     */
7355    spin_lock_irqsave(&rq->lock, flags);
7356
7357    __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7358
7359    update_rq_clock(rq);
7360    activate_task(rq, p, 0);
7361
7362    spin_unlock_irqrestore(&rq->lock, flags);
7363}
7364
7365/*
7366 * Ensures that the idle task is using init_mm right before its cpu goes
7367 * offline.
7368 */
7369void idle_task_exit(void)
7370{
7371    struct mm_struct *mm = current->active_mm;
7372
7373    BUG_ON(cpu_online(smp_processor_id()));
7374
7375    if (mm != &init_mm)
7376        switch_mm(mm, &init_mm, current);
7377    mmdrop(mm);
7378}
7379
7380/* called under rq->lock with disabled interrupts */
7381static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7382{
7383    struct rq *rq = cpu_rq(dead_cpu);
7384
7385    /* Must be exiting, otherwise would be on tasklist. */
7386    BUG_ON(!p->exit_state);
7387
7388    /* Cannot have done final schedule yet: would have vanished. */
7389    BUG_ON(p->state == TASK_DEAD);
7390
7391    get_task_struct(p);
7392
7393    /*
7394     * Drop lock around migration; if someone else moves it,
7395     * that's OK. No task can be added to this CPU, so iteration is
7396     * fine.
7397     */
7398    spin_unlock_irq(&rq->lock);
7399    move_task_off_dead_cpu(dead_cpu, p);
7400    spin_lock_irq(&rq->lock);
7401
7402    put_task_struct(p);
7403}
7404
7405/* release_task() removes task from tasklist, so we won't find dead tasks. */
7406static void migrate_dead_tasks(unsigned int dead_cpu)
7407{
7408    struct rq *rq = cpu_rq(dead_cpu);
7409    struct task_struct *next;
7410
7411    for ( ; ; ) {
7412        if (!rq->nr_running)
7413            break;
7414        update_rq_clock(rq);
7415        next = pick_next_task(rq);
7416        if (!next)
7417            break;
7418        next->sched_class->put_prev_task(rq, next);
7419        migrate_dead(dead_cpu, next);
7420
7421    }
7422}
7423
7424/*
7425 * remove the tasks which were accounted by rq from calc_load_tasks.
7426 */
7427static void calc_global_load_remove(struct rq *rq)
7428{
7429    atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7430    rq->calc_load_active = 0;
7431}
7432#endif /* CONFIG_HOTPLUG_CPU */
7433
7434#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7435
7436static struct ctl_table sd_ctl_dir[] = {
7437    {
7438        .procname = "sched_domain",
7439        .mode = 0555,
7440    },
7441    {0, },
7442};
7443
7444static struct ctl_table sd_ctl_root[] = {
7445    {
7446        .ctl_name = CTL_KERN,
7447        .procname = "kernel",
7448        .mode = 0555,
7449        .child = sd_ctl_dir,
7450    },
7451    {0, },
7452};
7453
7454static struct ctl_table *sd_alloc_ctl_entry(int n)
7455{
7456    struct ctl_table *entry =
7457        kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7458
7459    return entry;
7460}
7461
7462static void sd_free_ctl_entry(struct ctl_table **tablep)
7463{
7464    struct ctl_table *entry;
7465
7466    /*
7467     * In the intermediate directories, both the child directory and
7468     * procname are dynamically allocated and could fail but the mode
7469     * will always be set. In the lowest directory the names are
7470     * static strings and all have proc handlers.
7471     */
7472    for (entry = *tablep; entry->mode; entry++) {
7473        if (entry->child)
7474            sd_free_ctl_entry(&entry->child);
7475        if (entry->proc_handler == NULL)
7476            kfree(entry->procname);
7477    }
7478
7479    kfree(*tablep);
7480    *tablep = NULL;
7481}
7482
7483static void
7484set_table_entry(struct ctl_table *entry,
7485        const char *procname, void *data, int maxlen,
7486        mode_t mode, proc_handler *proc_handler)
7487{
7488    entry->procname = procname;
7489    entry->data = data;
7490    entry->maxlen = maxlen;
7491    entry->mode = mode;
7492    entry->proc_handler = proc_handler;
7493}
7494
7495static struct ctl_table *
7496sd_alloc_ctl_domain_table(struct sched_domain *sd)
7497{
7498    struct ctl_table *table = sd_alloc_ctl_entry(13);
7499
7500    if (table == NULL)
7501        return NULL;
7502
7503    set_table_entry(&table[0], "min_interval", &sd->min_interval,
7504        sizeof(long), 0644, proc_doulongvec_minmax);
7505    set_table_entry(&table[1], "max_interval", &sd->max_interval,
7506        sizeof(long), 0644, proc_doulongvec_minmax);
7507    set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7508        sizeof(int), 0644, proc_dointvec_minmax);
7509    set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7510        sizeof(int), 0644, proc_dointvec_minmax);
7511    set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7512        sizeof(int), 0644, proc_dointvec_minmax);
7513    set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7514        sizeof(int), 0644, proc_dointvec_minmax);
7515    set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7516        sizeof(int), 0644, proc_dointvec_minmax);
7517    set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7518        sizeof(int), 0644, proc_dointvec_minmax);
7519    set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7520        sizeof(int), 0644, proc_dointvec_minmax);
7521    set_table_entry(&table[9], "cache_nice_tries",
7522        &sd->cache_nice_tries,
7523        sizeof(int), 0644, proc_dointvec_minmax);
7524    set_table_entry(&table[10], "flags", &sd->flags,
7525        sizeof(int), 0644, proc_dointvec_minmax);
7526    set_table_entry(&table[11], "name", sd->name,
7527        CORENAME_MAX_SIZE, 0444, proc_dostring);
7528    /* &table[12] is terminator */
7529
7530    return table;
7531}
7532
7533static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7534{
7535    struct ctl_table *entry, *table;
7536    struct sched_domain *sd;
7537    int domain_num = 0, i;
7538    char buf[32];
7539
7540    for_each_domain(cpu, sd)
7541        domain_num++;
7542    entry = table = sd_alloc_ctl_entry(domain_num + 1);
7543    if (table == NULL)
7544        return NULL;
7545
7546    i = 0;
7547    for_each_domain(cpu, sd) {
7548        snprintf(buf, 32, "domain%d", i);
7549        entry->procname = kstrdup(buf, GFP_KERNEL);
7550        entry->mode = 0555;
7551        entry->child = sd_alloc_ctl_domain_table(sd);
7552        entry++;
7553        i++;
7554    }
7555    return table;
7556}
7557
7558static struct ctl_table_header *sd_sysctl_header;
7559static void register_sched_domain_sysctl(void)
7560{
7561    int i, cpu_num = num_possible_cpus();
7562    struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7563    char buf[32];
7564
7565    WARN_ON(sd_ctl_dir[0].child);
7566    sd_ctl_dir[0].child = entry;
7567
7568    if (entry == NULL)
7569        return;
7570
7571    for_each_possible_cpu(i) {
7572        snprintf(buf, 32, "cpu%d", i);
7573        entry->procname = kstrdup(buf, GFP_KERNEL);
7574        entry->mode = 0555;
7575        entry->child = sd_alloc_ctl_cpu_table(i);
7576        entry++;
7577    }
7578
7579    WARN_ON(sd_sysctl_header);
7580    sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7581}
7582
7583/* may be called multiple times per register */
7584static void unregister_sched_domain_sysctl(void)
7585{
7586    if (sd_sysctl_header)
7587        unregister_sysctl_table(sd_sysctl_header);
7588    sd_sysctl_header = NULL;
7589    if (sd_ctl_dir[0].child)
7590        sd_free_ctl_entry(&sd_ctl_dir[0].child);
7591}
7592#else
7593static void register_sched_domain_sysctl(void)
7594{
7595}
7596static void unregister_sched_domain_sysctl(void)
7597{
7598}
7599#endif
7600
7601static void set_rq_online(struct rq *rq)
7602{
7603    if (!rq->online) {
7604        const struct sched_class *class;
7605
7606        cpumask_set_cpu(rq->cpu, rq->rd->online);
7607        rq->online = 1;
7608
7609        for_each_class(class) {
7610            if (class->rq_online)
7611                class->rq_online(rq);
7612        }
7613    }
7614}
7615
7616static void set_rq_offline(struct rq *rq)
7617{
7618    if (rq->online) {
7619        const struct sched_class *class;
7620
7621        for_each_class(class) {
7622            if (class->rq_offline)
7623                class->rq_offline(rq);
7624        }
7625
7626        cpumask_clear_cpu(rq->cpu, rq->rd->online);
7627        rq->online = 0;
7628    }
7629}
7630
7631/*
7632 * migration_call - callback that gets triggered when a CPU is added.
7633 * Here we can start up the necessary migration thread for the new CPU.
7634 */
7635static int __cpuinit
7636migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7637{
7638    struct task_struct *p;
7639    int cpu = (long)hcpu;
7640    unsigned long flags;
7641    struct rq *rq;
7642
7643    switch (action) {
7644
7645    case CPU_UP_PREPARE:
7646    case CPU_UP_PREPARE_FROZEN:
7647        p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7648        if (IS_ERR(p))
7649            return NOTIFY_BAD;
7650        kthread_bind(p, cpu);
7651        /* Must be high prio: stop_machine expects to yield to it. */
7652        rq = task_rq_lock(p, &flags);
7653        __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7654        task_rq_unlock(rq, &flags);
7655        get_task_struct(p);
7656        cpu_rq(cpu)->migration_thread = p;
7657        rq->calc_load_update = calc_load_update;
7658        break;
7659
7660    case CPU_ONLINE:
7661    case CPU_ONLINE_FROZEN:
7662        /* Strictly unnecessary, as first user will wake it. */
7663        wake_up_process(cpu_rq(cpu)->migration_thread);
7664
7665        /* Update our root-domain */
7666        rq = cpu_rq(cpu);
7667        spin_lock_irqsave(&rq->lock, flags);
7668        if (rq->rd) {
7669            BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7670
7671            set_rq_online(rq);
7672        }
7673        spin_unlock_irqrestore(&rq->lock, flags);
7674        break;
7675
7676#ifdef CONFIG_HOTPLUG_CPU
7677    case CPU_UP_CANCELED:
7678    case CPU_UP_CANCELED_FROZEN:
7679        if (!cpu_rq(cpu)->migration_thread)
7680            break;
7681        /* Unbind it from offline cpu so it can run. Fall thru. */
7682        kthread_bind(cpu_rq(cpu)->migration_thread,
7683                 cpumask_any(cpu_online_mask));
7684        kthread_stop(cpu_rq(cpu)->migration_thread);
7685        put_task_struct(cpu_rq(cpu)->migration_thread);
7686        cpu_rq(cpu)->migration_thread = NULL;
7687        break;
7688
7689    case CPU_DEAD:
7690    case CPU_DEAD_FROZEN:
7691        cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7692        migrate_live_tasks(cpu);
7693        rq = cpu_rq(cpu);
7694        kthread_stop(rq->migration_thread);
7695        put_task_struct(rq->migration_thread);
7696        rq->migration_thread = NULL;
7697        /* Idle task back to normal (off runqueue, low prio) */
7698        spin_lock_irq(&rq->lock);
7699        update_rq_clock(rq);
7700        deactivate_task(rq, rq->idle, 0);
7701        __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7702        rq->idle->sched_class = &idle_sched_class;
7703        migrate_dead_tasks(cpu);
7704        spin_unlock_irq(&rq->lock);
7705        cpuset_unlock();
7706        migrate_nr_uninterruptible(rq);
7707        BUG_ON(rq->nr_running != 0);
7708        calc_global_load_remove(rq);
7709        /*
7710         * No need to migrate the tasks: it was best-effort if
7711         * they didn't take sched_hotcpu_mutex. Just wake up
7712         * the requestors.
7713         */
7714        spin_lock_irq(&rq->lock);
7715        while (!list_empty(&rq->migration_queue)) {
7716            struct migration_req *req;
7717
7718            req = list_entry(rq->migration_queue.next,
7719                     struct migration_req, list);
7720            list_del_init(&req->list);
7721            spin_unlock_irq(&rq->lock);
7722            complete(&req->done);
7723            spin_lock_irq(&rq->lock);
7724        }
7725        spin_unlock_irq(&rq->lock);
7726        break;
7727
7728    case CPU_DYING:
7729    case CPU_DYING_FROZEN:
7730        /* Update our root-domain */
7731        rq = cpu_rq(cpu);
7732        spin_lock_irqsave(&rq->lock, flags);
7733        if (rq->rd) {
7734            BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7735            set_rq_offline(rq);
7736        }
7737        spin_unlock_irqrestore(&rq->lock, flags);
7738        break;
7739#endif
7740    }
7741    return NOTIFY_OK;
7742}
7743
7744/*
7745 * Register at high priority so that task migration (migrate_all_tasks)
7746 * happens before everything else. This has to be lower priority than
7747 * the notifier in the perf_event subsystem, though.
7748 */
7749static struct notifier_block __cpuinitdata migration_notifier = {
7750    .notifier_call = migration_call,
7751    .priority = 10
7752};
7753
7754static int __init migration_init(void)
7755{
7756    void *cpu = (void *)(long)smp_processor_id();
7757    int err;
7758
7759    /* Start one for the boot CPU: */
7760    err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7761    BUG_ON(err == NOTIFY_BAD);
7762    migration_call(&migration_notifier, CPU_ONLINE, cpu);
7763    register_cpu_notifier(&migration_notifier);
7764
7765    return 0;
7766}
7767early_initcall(migration_init);
7768#endif
7769
7770#ifdef CONFIG_SMP
7771
7772#ifdef CONFIG_SCHED_DEBUG
7773
7774static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7775                  struct cpumask *groupmask)
7776{
7777    struct sched_group *group = sd->groups;
7778    char str[256];
7779
7780    cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7781    cpumask_clear(groupmask);
7782
7783    printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7784
7785    if (!(sd->flags & SD_LOAD_BALANCE)) {
7786        printk("does not load-balance\n");
7787        if (sd->parent)
7788            printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7789                    " has parent");
7790        return -1;
7791    }
7792
7793    printk(KERN_CONT "span %s level %s\n", str, sd->name);
7794
7795    if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7796        printk(KERN_ERR "ERROR: domain->span does not contain "
7797                "CPU%d\n", cpu);
7798    }
7799    if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7800        printk(KERN_ERR "ERROR: domain->groups does not contain"
7801                " CPU%d\n", cpu);
7802    }
7803
7804    printk(KERN_DEBUG "%*s groups:", level + 1, "");
7805    do {
7806        if (!group) {
7807            printk("\n");
7808            printk(KERN_ERR "ERROR: group is NULL\n");
7809            break;
7810        }
7811
7812        if (!group->cpu_power) {
7813            printk(KERN_CONT "\n");
7814            printk(KERN_ERR "ERROR: domain->cpu_power not "
7815                    "set\n");
7816            break;
7817        }
7818
7819        if (!cpumask_weight(sched_group_cpus(group))) {
7820            printk(KERN_CONT "\n");
7821            printk(KERN_ERR "ERROR: empty group\n");
7822            break;
7823        }
7824
7825        if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7826            printk(KERN_CONT "\n");
7827            printk(KERN_ERR "ERROR: repeated CPUs\n");
7828            break;
7829        }
7830
7831        cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7832
7833        cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7834
7835        printk(KERN_CONT " %s", str);
7836        if (group->cpu_power != SCHED_LOAD_SCALE) {
7837            printk(KERN_CONT " (cpu_power = %d)",
7838                group->cpu_power);
7839        }
7840
7841        group = group->next;
7842    } while (group != sd->groups);
7843    printk(KERN_CONT "\n");
7844
7845    if (!cpumask_equal(sched_domain_span(sd), groupmask))
7846        printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7847
7848    if (sd->parent &&
7849        !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7850        printk(KERN_ERR "ERROR: parent span is not a superset "
7851            "of domain->span\n");
7852    return 0;
7853}
7854
7855static void sched_domain_debug(struct sched_domain *sd, int cpu)
7856{
7857    cpumask_var_t groupmask;
7858    int level = 0;
7859
7860    if (!sd) {
7861        printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7862        return;
7863    }
7864
7865    printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7866
7867    if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7868        printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7869        return;
7870    }
7871
7872    for (;;) {
7873        if (sched_domain_debug_one(sd, cpu, level, groupmask))
7874            break;
7875        level++;
7876        sd = sd->parent;
7877        if (!sd)
7878            break;
7879    }
7880    free_cpumask_var(groupmask);
7881}
7882#else /* !CONFIG_SCHED_DEBUG */
7883# define sched_domain_debug(sd, cpu) do { } while (0)
7884#endif /* CONFIG_SCHED_DEBUG */
7885
7886static int sd_degenerate(struct sched_domain *sd)
7887{
7888    if (cpumask_weight(sched_domain_span(sd)) == 1)
7889        return 1;
7890
7891    /* Following flags need at least 2 groups */
7892    if (sd->flags & (SD_LOAD_BALANCE |
7893             SD_BALANCE_NEWIDLE |
7894             SD_BALANCE_FORK |
7895             SD_BALANCE_EXEC |
7896             SD_SHARE_CPUPOWER |
7897             SD_SHARE_PKG_RESOURCES)) {
7898        if (sd->groups != sd->groups->next)
7899            return 0;
7900    }
7901
7902    /* Following flags don't use groups */
7903    if (sd->flags & (SD_WAKE_AFFINE))
7904        return 0;
7905
7906    return 1;
7907}
7908
7909static int
7910sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7911{
7912    unsigned long cflags = sd->flags, pflags = parent->flags;
7913
7914    if (sd_degenerate(parent))
7915        return 1;
7916
7917    if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7918        return 0;
7919
7920    /* Flags needing groups don't count if only 1 group in parent */
7921    if (parent->groups == parent->groups->next) {
7922        pflags &= ~(SD_LOAD_BALANCE |
7923                SD_BALANCE_NEWIDLE |
7924                SD_BALANCE_FORK |
7925                SD_BALANCE_EXEC |
7926                SD_SHARE_CPUPOWER |
7927                SD_SHARE_PKG_RESOURCES);
7928        if (nr_node_ids == 1)
7929            pflags &= ~SD_SERIALIZE;
7930    }
7931    if (~cflags & pflags)
7932        return 0;
7933
7934    return 1;
7935}
7936
7937static void free_rootdomain(struct root_domain *rd)
7938{
7939    synchronize_sched();
7940
7941    cpupri_cleanup(&rd->cpupri);
7942
7943    free_cpumask_var(rd->rto_mask);
7944    free_cpumask_var(rd->online);
7945    free_cpumask_var(rd->span);
7946    kfree(rd);
7947}
7948
7949static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7950{
7951    struct root_domain *old_rd = NULL;
7952    unsigned long flags;
7953
7954    spin_lock_irqsave(&rq->lock, flags);
7955
7956    if (rq->rd) {
7957        old_rd = rq->rd;
7958
7959        if (cpumask_test_cpu(rq->cpu, old_rd->online))
7960            set_rq_offline(rq);
7961
7962        cpumask_clear_cpu(rq->cpu, old_rd->span);
7963
7964        /*
7965         * If we dont want to free the old_rt yet then
7966         * set old_rd to NULL to skip the freeing later
7967         * in this function:
7968         */
7969        if (!atomic_dec_and_test(&old_rd->refcount))
7970            old_rd = NULL;
7971    }
7972
7973    atomic_inc(&rd->refcount);
7974    rq->rd = rd;
7975
7976    cpumask_set_cpu(rq->cpu, rd->span);
7977    if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7978        set_rq_online(rq);
7979
7980    spin_unlock_irqrestore(&rq->lock, flags);
7981
7982    if (old_rd)
7983        free_rootdomain(old_rd);
7984}
7985
7986static int init_rootdomain(struct root_domain *rd, bool bootmem)
7987{
7988    gfp_t gfp = GFP_KERNEL;
7989
7990    memset(rd, 0, sizeof(*rd));
7991
7992    if (bootmem)
7993        gfp = GFP_NOWAIT;
7994
7995    if (!alloc_cpumask_var(&rd->span, gfp))
7996        goto out;
7997    if (!alloc_cpumask_var(&rd->online, gfp))
7998        goto free_span;
7999    if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8000        goto free_online;
8001
8002    if (cpupri_init(&rd->cpupri, bootmem) != 0)
8003        goto free_rto_mask;
8004    return 0;
8005
8006free_rto_mask:
8007    free_cpumask_var(rd->rto_mask);
8008free_online:
8009    free_cpumask_var(rd->online);
8010free_span:
8011    free_cpumask_var(rd->span);
8012out:
8013    return -ENOMEM;
8014}
8015
8016static void init_defrootdomain(void)
8017{
8018    init_rootdomain(&def_root_domain, true);
8019
8020    atomic_set(&def_root_domain.refcount, 1);
8021}
8022
8023static struct root_domain *alloc_rootdomain(void)
8024{
8025    struct root_domain *rd;
8026
8027    rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8028    if (!rd)
8029        return NULL;
8030
8031    if (init_rootdomain(rd, false) != 0) {
8032        kfree(rd);
8033        return NULL;
8034    }
8035
8036    return rd;
8037}
8038
8039/*
8040 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8041 * hold the hotplug lock.
8042 */
8043static void
8044cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8045{
8046    struct rq *rq = cpu_rq(cpu);
8047    struct sched_domain *tmp;
8048
8049    /* Remove the sched domains which do not contribute to scheduling. */
8050    for (tmp = sd; tmp; ) {
8051        struct sched_domain *parent = tmp->parent;
8052        if (!parent)
8053            break;
8054
8055        if (sd_parent_degenerate(tmp, parent)) {
8056            tmp->parent = parent->parent;
8057            if (parent->parent)
8058                parent->parent->child = tmp;
8059        } else
8060            tmp = tmp->parent;
8061    }
8062
8063    if (sd && sd_degenerate(sd)) {
8064        sd = sd->parent;
8065        if (sd)
8066            sd->child = NULL;
8067    }
8068
8069    sched_domain_debug(sd, cpu);
8070
8071    rq_attach_root(rq, rd);
8072    rcu_assign_pointer(rq->sd, sd);
8073}
8074
8075/* cpus with isolated domains */
8076static cpumask_var_t cpu_isolated_map;
8077
8078/* Setup the mask of cpus configured for isolated domains */
8079static int __init isolated_cpu_setup(char *str)
8080{
8081    alloc_bootmem_cpumask_var(&cpu_isolated_map);
8082    cpulist_parse(str, cpu_isolated_map);
8083    return 1;
8084}
8085
8086__setup("isolcpus=", isolated_cpu_setup);
8087
8088/*
8089 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8090 * to a function which identifies what group(along with sched group) a CPU
8091 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8092 * (due to the fact that we keep track of groups covered with a struct cpumask).
8093 *
8094 * init_sched_build_groups will build a circular linked list of the groups
8095 * covered by the given span, and will set each group's ->cpumask correctly,
8096 * and ->cpu_power to 0.
8097 */
8098static void
8099init_sched_build_groups(const struct cpumask *span,
8100            const struct cpumask *cpu_map,
8101            int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8102                    struct sched_group **sg,
8103                    struct cpumask *tmpmask),
8104            struct cpumask *covered, struct cpumask *tmpmask)
8105{
8106    struct sched_group *first = NULL, *last = NULL;
8107    int i;
8108
8109    cpumask_clear(covered);
8110
8111    for_each_cpu(i, span) {
8112        struct sched_group *sg;
8113        int group = group_fn(i, cpu_map, &sg, tmpmask);
8114        int j;
8115
8116        if (cpumask_test_cpu(i, covered))
8117            continue;
8118
8119        cpumask_clear(sched_group_cpus(sg));
8120        sg->cpu_power = 0;
8121
8122        for_each_cpu(j, span) {
8123            if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8124                continue;
8125
8126            cpumask_set_cpu(j, covered);
8127            cpumask_set_cpu(j, sched_group_cpus(sg));
8128        }
8129        if (!first)
8130            first = sg;
8131        if (last)
8132            last->next = sg;
8133        last = sg;
8134    }
8135    last->next = first;
8136}
8137
8138#define SD_NODES_PER_DOMAIN 16
8139
8140#ifdef CONFIG_NUMA
8141
8142/**
8143 * find_next_best_node - find the next node to include in a sched_domain
8144 * @node: node whose sched_domain we're building
8145 * @used_nodes: nodes already in the sched_domain
8146 *
8147 * Find the next node to include in a given scheduling domain. Simply
8148 * finds the closest node not already in the @used_nodes map.
8149 *
8150 * Should use nodemask_t.
8151 */
8152static int find_next_best_node(int node, nodemask_t *used_nodes)
8153{
8154    int i, n, val, min_val, best_node = 0;
8155
8156    min_val = INT_MAX;
8157
8158    for (i = 0; i < nr_node_ids; i++) {
8159        /* Start at @node */
8160        n = (node + i) % nr_node_ids;
8161
8162        if (!nr_cpus_node(n))
8163            continue;
8164
8165        /* Skip already used nodes */
8166        if (node_isset(n, *used_nodes))
8167            continue;
8168
8169        /* Simple min distance search */
8170        val = node_distance(node, n);
8171
8172        if (val < min_val) {
8173            min_val = val;
8174            best_node = n;
8175        }
8176    }
8177
8178    node_set(best_node, *used_nodes);
8179    return best_node;
8180}
8181
8182/**
8183 * sched_domain_node_span - get a cpumask for a node's sched_domain
8184 * @node: node whose cpumask we're constructing
8185 * @span: resulting cpumask
8186 *
8187 * Given a node, construct a good cpumask for its sched_domain to span. It
8188 * should be one that prevents unnecessary balancing, but also spreads tasks
8189 * out optimally.
8190 */
8191static void sched_domain_node_span(int node, struct cpumask *span)
8192{
8193    nodemask_t used_nodes;
8194    int i;
8195
8196    cpumask_clear(span);
8197    nodes_clear(used_nodes);
8198
8199    cpumask_or(span, span, cpumask_of_node(node));
8200    node_set(node, used_nodes);
8201
8202    for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8203        int next_node = find_next_best_node(node, &used_nodes);
8204
8205        cpumask_or(span, span, cpumask_of_node(next_node));
8206    }
8207}
8208#endif /* CONFIG_NUMA */
8209
8210int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8211
8212/*
8213 * The cpus mask in sched_group and sched_domain hangs off the end.
8214 *
8215 * ( See the the comments in include/linux/sched.h:struct sched_group
8216 * and struct sched_domain. )
8217 */
8218struct static_sched_group {
8219    struct sched_group sg;
8220    DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8221};
8222
8223struct static_sched_domain {
8224    struct sched_domain sd;
8225    DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8226};
8227
8228struct s_data {
8229#ifdef CONFIG_NUMA
8230    int sd_allnodes;
8231    cpumask_var_t domainspan;
8232    cpumask_var_t covered;
8233    cpumask_var_t notcovered;
8234#endif
8235    cpumask_var_t nodemask;
8236    cpumask_var_t this_sibling_map;
8237    cpumask_var_t this_core_map;
8238    cpumask_var_t send_covered;
8239    cpumask_var_t tmpmask;
8240    struct sched_group **sched_group_nodes;
8241    struct root_domain *rd;
8242};
8243
8244enum s_alloc {
8245    sa_sched_groups = 0,
8246    sa_rootdomain,
8247    sa_tmpmask,
8248    sa_send_covered,
8249    sa_this_core_map,
8250    sa_this_sibling_map,
8251    sa_nodemask,
8252    sa_sched_group_nodes,
8253#ifdef CONFIG_NUMA
8254    sa_notcovered,
8255    sa_covered,
8256    sa_domainspan,
8257#endif
8258    sa_none,
8259};
8260
8261/*
8262 * SMT sched-domains:
8263 */
8264#ifdef CONFIG_SCHED_SMT
8265static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8266static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8267
8268static int
8269cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8270         struct sched_group **sg, struct cpumask *unused)
8271{
8272    if (sg)
8273        *sg = &per_cpu(sched_group_cpus, cpu).sg;
8274    return cpu;
8275}
8276#endif /* CONFIG_SCHED_SMT */
8277
8278/*
8279 * multi-core sched-domains:
8280 */
8281#ifdef CONFIG_SCHED_MC
8282static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8283static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8284#endif /* CONFIG_SCHED_MC */
8285
8286#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8287static int
8288cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8289          struct sched_group **sg, struct cpumask *mask)
8290{
8291    int group;
8292
8293    cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8294    group = cpumask_first(mask);
8295    if (sg)
8296        *sg = &per_cpu(sched_group_core, group).sg;
8297    return group;
8298}
8299#elif defined(CONFIG_SCHED_MC)
8300static int
8301cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8302          struct sched_group **sg, struct cpumask *unused)
8303{
8304    if (sg)
8305        *sg = &per_cpu(sched_group_core, cpu).sg;
8306    return cpu;
8307}
8308#endif
8309
8310static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8311static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8312
8313static int
8314cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8315          struct sched_group **sg, struct cpumask *mask)
8316{
8317    int group;
8318#ifdef CONFIG_SCHED_MC
8319    cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8320    group = cpumask_first(mask);
8321#elif defined(CONFIG_SCHED_SMT)
8322    cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8323    group = cpumask_first(mask);
8324#else
8325    group = cpu;
8326#endif
8327    if (sg)
8328        *sg = &per_cpu(sched_group_phys, group).sg;
8329    return group;
8330}
8331
8332#ifdef CONFIG_NUMA
8333/*
8334 * The init_sched_build_groups can't handle what we want to do with node
8335 * groups, so roll our own. Now each node has its own list of groups which
8336 * gets dynamically allocated.
8337 */
8338static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8339static struct sched_group ***sched_group_nodes_bycpu;
8340
8341static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8342static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8343
8344static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8345                 struct sched_group **sg,
8346                 struct cpumask *nodemask)
8347{
8348    int group;
8349
8350    cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8351    group = cpumask_first(nodemask);
8352
8353    if (sg)
8354        *sg = &per_cpu(sched_group_allnodes, group).sg;
8355    return group;
8356}
8357
8358static void init_numa_sched_groups_power(struct sched_group *group_head)
8359{
8360    struct sched_group *sg = group_head;
8361    int j;
8362
8363    if (!sg)
8364        return;
8365    do {
8366        for_each_cpu(j, sched_group_cpus(sg)) {
8367            struct sched_domain *sd;
8368
8369            sd = &per_cpu(phys_domains, j).sd;
8370            if (j != group_first_cpu(sd->groups)) {
8371                /*
8372                 * Only add "power" once for each
8373                 * physical package.
8374                 */
8375                continue;
8376            }
8377
8378            sg->cpu_power += sd->groups->cpu_power;
8379        }
8380        sg = sg->next;
8381    } while (sg != group_head);
8382}
8383
8384static int build_numa_sched_groups(struct s_data *d,
8385                   const struct cpumask *cpu_map, int num)
8386{
8387    struct sched_domain *sd;
8388    struct sched_group *sg, *prev;
8389    int n, j;
8390
8391    cpumask_clear(d->covered);
8392    cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8393    if (cpumask_empty(d->nodemask)) {
8394        d->sched_group_nodes[num] = NULL;
8395        goto out;
8396    }
8397
8398    sched_domain_node_span(num, d->domainspan);
8399    cpumask_and(d->domainspan, d->domainspan, cpu_map);
8400
8401    sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8402              GFP_KERNEL, num);
8403    if (!sg) {
8404        printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8405               num);
8406        return -ENOMEM;
8407    }
8408    d->sched_group_nodes[num] = sg;
8409
8410    for_each_cpu(j, d->nodemask) {
8411        sd = &per_cpu(node_domains, j).sd;
8412        sd->groups = sg;
8413    }
8414
8415    sg->cpu_power = 0;
8416    cpumask_copy(sched_group_cpus(sg), d->nodemask);
8417    sg->next = sg;
8418    cpumask_or(d->covered, d->covered, d->nodemask);
8419
8420    prev = sg;
8421    for (j = 0; j < nr_node_ids; j++) {
8422        n = (num + j) % nr_node_ids;
8423        cpumask_complement(d->notcovered, d->covered);
8424        cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8425        cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8426        if (cpumask_empty(d->tmpmask))
8427            break;
8428        cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8429        if (cpumask_empty(d->tmpmask))
8430            continue;
8431        sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8432                  GFP_KERNEL, num);
8433        if (!sg) {
8434            printk(KERN_WARNING
8435                   "Can not alloc domain group for node %d\n", j);
8436            return -ENOMEM;
8437        }
8438        sg->cpu_power = 0;
8439        cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8440        sg->next = prev->next;
8441        cpumask_or(d->covered, d->covered, d->tmpmask);
8442        prev->next = sg;
8443        prev = sg;
8444    }
8445out:
8446    return 0;
8447}
8448#endif /* CONFIG_NUMA */
8449
8450#ifdef CONFIG_NUMA
8451/* Free memory allocated for various sched_group structures */
8452static void free_sched_groups(const struct cpumask *cpu_map,
8453                  struct cpumask *nodemask)
8454{
8455    int cpu, i;
8456
8457    for_each_cpu(cpu, cpu_map) {
8458        struct sched_group **sched_group_nodes
8459            = sched_group_nodes_bycpu[cpu];
8460
8461        if (!sched_group_nodes)
8462            continue;
8463
8464        for (i = 0; i < nr_node_ids; i++) {
8465            struct sched_group *oldsg, *sg = sched_group_nodes[i];
8466
8467            cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8468            if (cpumask_empty(nodemask))
8469                continue;
8470
8471            if (sg == NULL)
8472                continue;
8473            sg = sg->next;
8474next_sg:
8475            oldsg = sg;
8476            sg = sg->next;
8477            kfree(oldsg);
8478            if (oldsg != sched_group_nodes[i])
8479                goto next_sg;
8480        }
8481        kfree(sched_group_nodes);
8482        sched_group_nodes_bycpu[cpu] = NULL;
8483    }
8484}
8485#else /* !CONFIG_NUMA */
8486static void free_sched_groups(const struct cpumask *cpu_map,
8487                  struct cpumask *nodemask)
8488{
8489}
8490#endif /* CONFIG_NUMA */
8491
8492/*
8493 * Initialize sched groups cpu_power.
8494 *
8495 * cpu_power indicates the capacity of sched group, which is used while
8496 * distributing the load between different sched groups in a sched domain.
8497 * Typically cpu_power for all the groups in a sched domain will be same unless
8498 * there are asymmetries in the topology. If there are asymmetries, group
8499 * having more cpu_power will pickup more load compared to the group having
8500 * less cpu_power.
8501 */
8502static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8503{
8504    struct sched_domain *child;
8505    struct sched_group *group;
8506    long power;
8507    int weight;
8508
8509    WARN_ON(!sd || !sd->groups);
8510
8511    if (cpu != group_first_cpu(sd->groups))
8512        return;
8513
8514    child = sd->child;
8515
8516    sd->groups->cpu_power = 0;
8517
8518    if (!child) {
8519        power = SCHED_LOAD_SCALE;
8520        weight = cpumask_weight(sched_domain_span(sd));
8521        /*
8522         * SMT siblings share the power of a single core.
8523         * Usually multiple threads get a better yield out of
8524         * that one core than a single thread would have,
8525         * reflect that in sd->smt_gain.
8526         */
8527        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8528            power *= sd->smt_gain;
8529            power /= weight;
8530            power >>= SCHED_LOAD_SHIFT;
8531        }
8532        sd->groups->cpu_power += power;
8533        return;
8534    }
8535
8536    /*
8537     * Add cpu_power of each child group to this groups cpu_power.
8538     */
8539    group = child->groups;
8540    do {
8541        sd->groups->cpu_power += group->cpu_power;
8542        group = group->next;
8543    } while (group != child->groups);
8544}
8545
8546/*
8547 * Initializers for schedule domains
8548 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8549 */
8550
8551#ifdef CONFIG_SCHED_DEBUG
8552# define SD_INIT_NAME(sd, type) sd->name = #type
8553#else
8554# define SD_INIT_NAME(sd, type) do { } while (0)
8555#endif
8556
8557#define SD_INIT(sd, type) sd_init_##type(sd)
8558
8559#define SD_INIT_FUNC(type) \
8560static noinline void sd_init_##type(struct sched_domain *sd) \
8561{ \
8562    memset(sd, 0, sizeof(*sd)); \
8563    *sd = SD_##type##_INIT; \
8564    sd->level = SD_LV_##type; \
8565    SD_INIT_NAME(sd, type); \
8566}
8567
8568SD_INIT_FUNC(CPU)
8569#ifdef CONFIG_NUMA
8570 SD_INIT_FUNC(ALLNODES)
8571 SD_INIT_FUNC(NODE)
8572#endif
8573#ifdef CONFIG_SCHED_SMT
8574 SD_INIT_FUNC(SIBLING)
8575#endif
8576#ifdef CONFIG_SCHED_MC
8577 SD_INIT_FUNC(MC)
8578#endif
8579
8580static int default_relax_domain_level = -1;
8581
8582static int __init setup_relax_domain_level(char *str)
8583{
8584    unsigned long val;
8585
8586    val = simple_strtoul(str, NULL, 0);
8587    if (val < SD_LV_MAX)
8588        default_relax_domain_level = val;
8589
8590    return 1;
8591}
8592__setup("relax_domain_level=", setup_relax_domain_level);
8593
8594static void set_domain_attribute(struct sched_domain *sd,
8595                 struct sched_domain_attr *attr)
8596{
8597    int request;
8598
8599    if (!attr || attr->relax_domain_level < 0) {
8600        if (default_relax_domain_level < 0)
8601            return;
8602        else
8603            request = default_relax_domain_level;
8604    } else
8605        request = attr->relax_domain_level;
8606    if (request < sd->level) {
8607        /* turn off idle balance on this domain */
8608        sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8609    } else {
8610        /* turn on idle balance on this domain */
8611        sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8612    }
8613}
8614
8615static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8616                 const struct cpumask *cpu_map)
8617{
8618    switch (what) {
8619    case sa_sched_groups:
8620        free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8621        d->sched_group_nodes = NULL;
8622    case sa_rootdomain:
8623        free_rootdomain(d->rd); /* fall through */
8624    case sa_tmpmask:
8625        free_cpumask_var(d->tmpmask); /* fall through */
8626    case sa_send_covered:
8627        free_cpumask_var(d->send_covered); /* fall through */
8628    case sa_this_core_map:
8629        free_cpumask_var(d->this_core_map); /* fall through */
8630    case sa_this_sibling_map:
8631        free_cpumask_var(d->this_sibling_map); /* fall through */
8632    case sa_nodemask:
8633        free_cpumask_var(d->nodemask); /* fall through */
8634    case sa_sched_group_nodes:
8635#ifdef CONFIG_NUMA
8636        kfree(d->sched_group_nodes); /* fall through */
8637    case sa_notcovered:
8638        free_cpumask_var(d->notcovered); /* fall through */
8639    case sa_covered:
8640        free_cpumask_var(d->covered); /* fall through */
8641    case sa_domainspan:
8642        free_cpumask_var(d->domainspan); /* fall through */
8643#endif
8644    case sa_none:
8645        break;
8646    }
8647}
8648
8649static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8650                           const struct cpumask *cpu_map)
8651{
8652#ifdef CONFIG_NUMA
8653    if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8654        return sa_none;
8655    if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8656        return sa_domainspan;
8657    if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8658        return sa_covered;
8659    /* Allocate the per-node list of sched groups */
8660    d->sched_group_nodes = kcalloc(nr_node_ids,
8661                      sizeof(struct sched_group *), GFP_KERNEL);
8662    if (!d->sched_group_nodes) {
8663        printk(KERN_WARNING "Can not alloc sched group node list\n");
8664        return sa_notcovered;
8665    }
8666    sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8667#endif
8668    if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8669        return sa_sched_group_nodes;
8670    if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8671        return sa_nodemask;
8672    if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8673        return sa_this_sibling_map;
8674    if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8675        return sa_this_core_map;
8676    if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8677        return sa_send_covered;
8678    d->rd = alloc_rootdomain();
8679    if (!d->rd) {
8680        printk(KERN_WARNING "Cannot alloc root domain\n");
8681        return sa_tmpmask;
8682    }
8683    return sa_rootdomain;
8684}
8685
8686static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8687    const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8688{
8689    struct sched_domain *sd = NULL;
8690#ifdef CONFIG_NUMA
8691    struct sched_domain *parent;
8692
8693    d->sd_allnodes = 0;
8694    if (cpumask_weight(cpu_map) >
8695        SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8696        sd = &per_cpu(allnodes_domains, i).sd;
8697        SD_INIT(sd, ALLNODES);
8698        set_domain_attribute(sd, attr);
8699        cpumask_copy(sched_domain_span(sd), cpu_map);
8700        cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8701        d->sd_allnodes = 1;
8702    }
8703    parent = sd;
8704
8705    sd = &per_cpu(node_domains, i).sd;
8706    SD_INIT(sd, NODE);
8707    set_domain_attribute(sd, attr);
8708    sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8709    sd->parent = parent;
8710    if (parent)
8711        parent->child = sd;
8712    cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8713#endif
8714    return sd;
8715}
8716
8717static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8718    const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8719    struct sched_domain *parent, int i)
8720{
8721    struct sched_domain *sd;
8722    sd = &per_cpu(phys_domains, i).sd;
8723    SD_INIT(sd, CPU);
8724    set_domain_attribute(sd, attr);
8725    cpumask_copy(sched_domain_span(sd), d->nodemask);
8726    sd->parent = parent;
8727    if (parent)
8728        parent->child = sd;
8729    cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8730    return sd;
8731}
8732
8733static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8734    const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8735    struct sched_domain *parent, int i)
8736{
8737    struct sched_domain *sd = parent;
8738#ifdef CONFIG_SCHED_MC
8739    sd = &per_cpu(core_domains, i).sd;
8740    SD_INIT(sd, MC);
8741    set_domain_attribute(sd, attr);
8742    cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8743    sd->parent = parent;
8744    parent->child = sd;
8745    cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8746#endif
8747    return sd;
8748}
8749
8750static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8751    const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8752    struct sched_domain *parent, int i)
8753{
8754    struct sched_domain *sd = parent;
8755#ifdef CONFIG_SCHED_SMT
8756    sd = &per_cpu(cpu_domains, i).sd;
8757    SD_INIT(sd, SIBLING);
8758    set_domain_attribute(sd, attr);
8759    cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8760    sd->parent = parent;
8761    parent->child = sd;
8762    cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8763#endif
8764    return sd;
8765}
8766
8767static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8768                   const struct cpumask *cpu_map, int cpu)
8769{
8770    switch (l) {
8771#ifdef CONFIG_SCHED_SMT
8772    case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8773        cpumask_and(d->this_sibling_map, cpu_map,
8774                topology_thread_cpumask(cpu));
8775        if (cpu == cpumask_first(d->this_sibling_map))
8776            init_sched_build_groups(d->this_sibling_map, cpu_map,
8777                        &cpu_to_cpu_group,
8778                        d->send_covered, d->tmpmask);
8779        break;
8780#endif
8781#ifdef CONFIG_SCHED_MC
8782    case SD_LV_MC: /* set up multi-core groups */
8783        cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8784        if (cpu == cpumask_first(d->this_core_map))
8785            init_sched_build_groups(d->this_core_map, cpu_map,
8786                        &cpu_to_core_group,
8787                        d->send_covered, d->tmpmask);
8788        break;
8789#endif
8790    case SD_LV_CPU: /* set up physical groups */
8791        cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8792        if (!cpumask_empty(d->nodemask))
8793            init_sched_build_groups(d->nodemask, cpu_map,
8794                        &cpu_to_phys_group,
8795                        d->send_covered, d->tmpmask);
8796        break;
8797#ifdef CONFIG_NUMA
8798    case SD_LV_ALLNODES:
8799        init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8800                    d->send_covered, d->tmpmask);
8801        break;
8802#endif
8803    default:
8804        break;
8805    }
8806}
8807
8808/*
8809 * Build sched domains for a given set of cpus and attach the sched domains
8810 * to the individual cpus
8811 */
8812static int __build_sched_domains(const struct cpumask *cpu_map,
8813                 struct sched_domain_attr *attr)
8814{
8815    enum s_alloc alloc_state = sa_none;
8816    struct s_data d;
8817    struct sched_domain *sd;
8818    int i;
8819#ifdef CONFIG_NUMA
8820    d.sd_allnodes = 0;
8821#endif
8822
8823    alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8824    if (alloc_state != sa_rootdomain)
8825        goto error;
8826    alloc_state = sa_sched_groups;
8827
8828    /*
8829     * Set up domains for cpus specified by the cpu_map.
8830     */
8831    for_each_cpu(i, cpu_map) {
8832        cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8833                cpu_map);
8834
8835        sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8836        sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8837        sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8838        sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8839    }
8840
8841    for_each_cpu(i, cpu_map) {
8842        build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8843        build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8844    }
8845
8846    /* Set up physical groups */
8847    for (i = 0; i < nr_node_ids; i++)
8848        build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8849
8850#ifdef CONFIG_NUMA
8851    /* Set up node groups */
8852    if (d.sd_allnodes)
8853        build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8854
8855    for (i = 0; i < nr_node_ids; i++)
8856        if (build_numa_sched_groups(&d, cpu_map, i))
8857            goto error;
8858#endif
8859
8860    /* Calculate CPU power for physical packages and nodes */
8861#ifdef CONFIG_SCHED_SMT
8862    for_each_cpu(i, cpu_map) {
8863        sd = &per_cpu(cpu_domains, i).sd;
8864        init_sched_groups_power(i, sd);
8865    }
8866#endif
8867#ifdef CONFIG_SCHED_MC
8868    for_each_cpu(i, cpu_map) {
8869        sd = &per_cpu(core_domains, i).sd;
8870        init_sched_groups_power(i, sd);
8871    }
8872#endif
8873
8874    for_each_cpu(i, cpu_map) {
8875        sd = &per_cpu(phys_domains, i).sd;
8876        init_sched_groups_power(i, sd);
8877    }
8878
8879#ifdef CONFIG_NUMA
8880    for (i = 0; i < nr_node_ids; i++)
8881        init_numa_sched_groups_power(d.sched_group_nodes[i]);
8882
8883    if (d.sd_allnodes) {
8884        struct sched_group *sg;
8885
8886        cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8887                                d.tmpmask);
8888        init_numa_sched_groups_power(sg);
8889    }
8890#endif
8891
8892    /* Attach the domains */
8893    for_each_cpu(i, cpu_map) {
8894#ifdef CONFIG_SCHED_SMT
8895        sd = &per_cpu(cpu_domains, i).sd;
8896#elif defined(CONFIG_SCHED_MC)
8897        sd = &per_cpu(core_domains, i).sd;
8898#else
8899        sd = &per_cpu(phys_domains, i).sd;
8900#endif
8901        cpu_attach_domain(sd, d.rd, i);
8902    }
8903
8904    d.sched_group_nodes = NULL; /* don't free this we still need it */
8905    __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8906    return 0;
8907
8908error:
8909    __free_domain_allocs(&d, alloc_state, cpu_map);
8910    return -ENOMEM;
8911}
8912
8913static int build_sched_domains(const struct cpumask *cpu_map)
8914{
8915    return __build_sched_domains(cpu_map, NULL);
8916}
8917
8918static struct cpumask *doms_cur; /* current sched domains */
8919static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8920static struct sched_domain_attr *dattr_cur;
8921                /* attribues of custom domains in 'doms_cur' */
8922
8923/*
8924 * Special case: If a kmalloc of a doms_cur partition (array of
8925 * cpumask) fails, then fallback to a single sched domain,
8926 * as determined by the single cpumask fallback_doms.
8927 */
8928static cpumask_var_t fallback_doms;
8929
8930/*
8931 * arch_update_cpu_topology lets virtualized architectures update the
8932 * cpu core maps. It is supposed to return 1 if the topology changed
8933 * or 0 if it stayed the same.
8934 */
8935int __attribute__((weak)) arch_update_cpu_topology(void)
8936{
8937    return 0;
8938}
8939
8940/*
8941 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8942 * For now this just excludes isolated cpus, but could be used to
8943 * exclude other special cases in the future.
8944 */
8945static int arch_init_sched_domains(const struct cpumask *cpu_map)
8946{
8947    int err;
8948
8949    arch_update_cpu_topology();
8950    ndoms_cur = 1;
8951    doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8952    if (!doms_cur)
8953        doms_cur = fallback_doms;
8954    cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8955    dattr_cur = NULL;
8956    err = build_sched_domains(doms_cur);
8957    register_sched_domain_sysctl();
8958
8959    return err;
8960}
8961
8962static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8963                       struct cpumask *tmpmask)
8964{
8965    free_sched_groups(cpu_map, tmpmask);
8966}
8967
8968/*
8969 * Detach sched domains from a group of cpus specified in cpu_map
8970 * These cpus will now be attached to the NULL domain
8971 */
8972static void detach_destroy_domains(const struct cpumask *cpu_map)
8973{
8974    /* Save because hotplug lock held. */
8975    static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8976    int i;
8977
8978    for_each_cpu(i, cpu_map)
8979        cpu_attach_domain(NULL, &def_root_domain, i);
8980    synchronize_sched();
8981    arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8982}
8983
8984/* handle null as "default" */
8985static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8986            struct sched_domain_attr *new, int idx_new)
8987{
8988    struct sched_domain_attr tmp;
8989
8990    /* fast path */
8991    if (!new && !cur)
8992        return 1;
8993
8994    tmp = SD_ATTR_INIT;
8995    return !memcmp(cur ? (cur + idx_cur) : &tmp,
8996            new ? (new + idx_new) : &tmp,
8997            sizeof(struct sched_domain_attr));
8998}
8999
9000/*
9001 * Partition sched domains as specified by the 'ndoms_new'
9002 * cpumasks in the array doms_new[] of cpumasks. This compares
9003 * doms_new[] to the current sched domain partitioning, doms_cur[].
9004 * It destroys each deleted domain and builds each new domain.
9005 *
9006 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9007 * The masks don't intersect (don't overlap.) We should setup one
9008 * sched domain for each mask. CPUs not in any of the cpumasks will
9009 * not be load balanced. If the same cpumask appears both in the
9010 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9011 * it as it is.
9012 *
9013 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9014 * ownership of it and will kfree it when done with it. If the caller
9015 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9016 * ndoms_new == 1, and partition_sched_domains() will fallback to
9017 * the single partition 'fallback_doms', it also forces the domains
9018 * to be rebuilt.
9019 *
9020 * If doms_new == NULL it will be replaced with cpu_online_mask.
9021 * ndoms_new == 0 is a special case for destroying existing domains,
9022 * and it will not create the default domain.
9023 *
9024 * Call with hotplug lock held
9025 */
9026/* FIXME: Change to struct cpumask *doms_new[] */
9027void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9028                 struct sched_domain_attr *dattr_new)
9029{
9030    int i, j, n;
9031    int new_topology;
9032
9033    mutex_lock(&sched_domains_mutex);
9034
9035    /* always unregister in case we don't destroy any domains */
9036    unregister_sched_domain_sysctl();
9037
9038    /* Let architecture update cpu core mappings. */
9039    new_topology = arch_update_cpu_topology();
9040
9041    n = doms_new ? ndoms_new : 0;
9042
9043    /* Destroy deleted domains */
9044    for (i = 0; i < ndoms_cur; i++) {
9045        for (j = 0; j < n && !new_topology; j++) {
9046            if (cpumask_equal(&doms_cur[i], &doms_new[j])
9047                && dattrs_equal(dattr_cur, i, dattr_new, j))
9048                goto match1;
9049        }
9050        /* no match - a current sched domain not in new doms_new[] */
9051        detach_destroy_domains(doms_cur + i);
9052match1:
9053        ;
9054    }
9055
9056    if (doms_new == NULL) {
9057        ndoms_cur = 0;
9058        doms_new = fallback_doms;
9059        cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9060        WARN_ON_ONCE(dattr_new);
9061    }
9062
9063    /* Build new domains */
9064    for (i = 0; i < ndoms_new; i++) {
9065        for (j = 0; j < ndoms_cur && !new_topology; j++) {
9066            if (cpumask_equal(&doms_new[i], &doms_cur[j])
9067                && dattrs_equal(dattr_new, i, dattr_cur, j))
9068                goto match2;
9069        }
9070        /* no match - add a new doms_new */
9071        __build_sched_domains(doms_new + i,
9072                    dattr_new ? dattr_new + i : NULL);
9073match2:
9074        ;
9075    }
9076
9077    /* Remember the new sched domains */
9078    if (doms_cur != fallback_doms)
9079        kfree(doms_cur);
9080    kfree(dattr_cur); /* kfree(NULL) is safe */
9081    doms_cur = doms_new;
9082    dattr_cur = dattr_new;
9083    ndoms_cur = ndoms_new;
9084
9085    register_sched_domain_sysctl();
9086
9087    mutex_unlock(&sched_domains_mutex);
9088}
9089
9090#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9091static void arch_reinit_sched_domains(void)
9092{
9093    get_online_cpus();
9094
9095    /* Destroy domains first to force the rebuild */
9096    partition_sched_domains(0, NULL, NULL);
9097
9098    rebuild_sched_domains();
9099    put_online_cpus();
9100}
9101
9102static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9103{
9104    unsigned int level = 0;
9105
9106    if (sscanf(buf, "%u", &level) != 1)
9107        return -EINVAL;
9108
9109    /*
9110     * level is always be positive so don't check for
9111     * level < POWERSAVINGS_BALANCE_NONE which is 0
9112     * What happens on 0 or 1 byte write,
9113     * need to check for count as well?
9114     */
9115
9116    if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9117        return -EINVAL;
9118
9119    if (smt)
9120        sched_smt_power_savings = level;
9121    else
9122        sched_mc_power_savings = level;
9123
9124    arch_reinit_sched_domains();
9125
9126    return count;
9127}
9128
9129#ifdef CONFIG_SCHED_MC
9130static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9131                       char *page)
9132{
9133    return sprintf(page, "%u\n", sched_mc_power_savings);
9134}
9135static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9136                        const char *buf, size_t count)
9137{
9138    return sched_power_savings_store(buf, count, 0);
9139}
9140static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9141             sched_mc_power_savings_show,
9142             sched_mc_power_savings_store);
9143#endif
9144
9145#ifdef CONFIG_SCHED_SMT
9146static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9147                        char *page)
9148{
9149    return sprintf(page, "%u\n", sched_smt_power_savings);
9150}
9151static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9152                         const char *buf, size_t count)
9153{
9154    return sched_power_savings_store(buf, count, 1);
9155}
9156static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9157           sched_smt_power_savings_show,
9158           sched_smt_power_savings_store);
9159#endif
9160
9161int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9162{
9163    int err = 0;
9164
9165#ifdef CONFIG_SCHED_SMT
9166    if (smt_capable())
9167        err = sysfs_create_file(&cls->kset.kobj,
9168                    &attr_sched_smt_power_savings.attr);
9169#endif
9170#ifdef CONFIG_SCHED_MC
9171    if (!err && mc_capable())
9172        err = sysfs_create_file(&cls->kset.kobj,
9173                    &attr_sched_mc_power_savings.attr);
9174#endif
9175    return err;
9176}
9177#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9178
9179#ifndef CONFIG_CPUSETS
9180/*
9181 * Add online and remove offline CPUs from the scheduler domains.
9182 * When cpusets are enabled they take over this function.
9183 */
9184static int update_sched_domains(struct notifier_block *nfb,
9185                unsigned long action, void *hcpu)
9186{
9187    switch (action) {
9188    case CPU_ONLINE:
9189    case CPU_ONLINE_FROZEN:
9190    case CPU_DOWN_PREPARE:
9191    case CPU_DOWN_PREPARE_FROZEN:
9192    case CPU_DOWN_FAILED:
9193    case CPU_DOWN_FAILED_FROZEN:
9194        partition_sched_domains(1, NULL, NULL);
9195        return NOTIFY_OK;
9196
9197    default:
9198        return NOTIFY_DONE;
9199    }
9200}
9201#endif
9202
9203static int update_runtime(struct notifier_block *nfb,
9204                unsigned long action, void *hcpu)
9205{
9206    int cpu = (int)(long)hcpu;
9207
9208    switch (action) {
9209    case CPU_DOWN_PREPARE:
9210    case CPU_DOWN_PREPARE_FROZEN:
9211        disable_runtime(cpu_rq(cpu));
9212        return NOTIFY_OK;
9213
9214    case CPU_DOWN_FAILED:
9215    case CPU_DOWN_FAILED_FROZEN:
9216    case CPU_ONLINE:
9217    case CPU_ONLINE_FROZEN:
9218        enable_runtime(cpu_rq(cpu));
9219        return NOTIFY_OK;
9220
9221    default:
9222        return NOTIFY_DONE;
9223    }
9224}
9225
9226void __init sched_init_smp(void)
9227{
9228    cpumask_var_t non_isolated_cpus;
9229
9230    alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9231    alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9232
9233#if defined(CONFIG_NUMA)
9234    sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9235                                GFP_KERNEL);
9236    BUG_ON(sched_group_nodes_bycpu == NULL);
9237#endif
9238    get_online_cpus();
9239    mutex_lock(&sched_domains_mutex);
9240    arch_init_sched_domains(cpu_active_mask);
9241    cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9242    if (cpumask_empty(non_isolated_cpus))
9243        cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9244    mutex_unlock(&sched_domains_mutex);
9245    put_online_cpus();
9246
9247#ifndef CONFIG_CPUSETS
9248    /* XXX: Theoretical race here - CPU may be hotplugged now */
9249    hotcpu_notifier(update_sched_domains, 0);
9250#endif
9251
9252    /* RT runtime code needs to handle some hotplug events */
9253    hotcpu_notifier(update_runtime, 0);
9254
9255    init_hrtick();
9256
9257    /* Move init over to a non-isolated CPU */
9258    if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9259        BUG();
9260    sched_init_granularity();
9261    free_cpumask_var(non_isolated_cpus);
9262
9263    init_sched_rt_class();
9264}
9265#else
9266void __init sched_init_smp(void)
9267{
9268    sched_init_granularity();
9269}
9270#endif /* CONFIG_SMP */
9271
9272const_debug unsigned int sysctl_timer_migration = 1;
9273
9274int in_sched_functions(unsigned long addr)
9275{
9276    return in_lock_functions(addr) ||
9277        (addr >= (unsigned long)__sched_text_start
9278        && addr < (unsigned long)__sched_text_end);
9279}
9280
9281static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9282{
9283    cfs_rq->tasks_timeline = RB_ROOT;
9284    INIT_LIST_HEAD(&cfs_rq->tasks);
9285#ifdef CONFIG_FAIR_GROUP_SCHED
9286    cfs_rq->rq = rq;
9287#endif
9288    cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9289}
9290
9291static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9292{
9293    struct rt_prio_array *array;
9294    int i;
9295
9296    array = &rt_rq->active;
9297    for (i = 0; i < MAX_RT_PRIO; i++) {
9298        INIT_LIST_HEAD(array->queue + i);
9299        __clear_bit(i, array->bitmap);
9300    }
9301    /* delimiter for bitsearch: */
9302    __set_bit(MAX_RT_PRIO, array->bitmap);
9303
9304#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9305    rt_rq->highest_prio.curr = MAX_RT_PRIO;
9306#ifdef CONFIG_SMP
9307    rt_rq->highest_prio.next = MAX_RT_PRIO;
9308#endif
9309#endif
9310#ifdef CONFIG_SMP
9311    rt_rq->rt_nr_migratory = 0;
9312    rt_rq->overloaded = 0;
9313    plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9314#endif
9315
9316    rt_rq->rt_time = 0;
9317    rt_rq->rt_throttled = 0;
9318    rt_rq->rt_runtime = 0;
9319    spin_lock_init(&rt_rq->rt_runtime_lock);
9320
9321#ifdef CONFIG_RT_GROUP_SCHED
9322    rt_rq->rt_nr_boosted = 0;
9323    rt_rq->rq = rq;
9324#endif
9325}
9326
9327#ifdef CONFIG_FAIR_GROUP_SCHED
9328static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9329                struct sched_entity *se, int cpu, int add,
9330                struct sched_entity *parent)
9331{
9332    struct rq *rq = cpu_rq(cpu);
9333    tg->cfs_rq[cpu] = cfs_rq;
9334    init_cfs_rq(cfs_rq, rq);
9335    cfs_rq->tg = tg;
9336    if (add)
9337        list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9338
9339    tg->se[cpu] = se;
9340    /* se could be NULL for init_task_group */
9341    if (!se)
9342        return;
9343
9344    if (!parent)
9345        se->cfs_rq = &rq->cfs;
9346    else
9347        se->cfs_rq = parent->my_q;
9348
9349    se->my_q = cfs_rq;
9350    se->load.weight = tg->shares;
9351    se->load.inv_weight = 0;
9352    se->parent = parent;
9353}
9354#endif
9355
9356#ifdef CONFIG_RT_GROUP_SCHED
9357static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9358        struct sched_rt_entity *rt_se, int cpu, int add,
9359        struct sched_rt_entity *parent)
9360{
9361    struct rq *rq = cpu_rq(cpu);
9362
9363    tg->rt_rq[cpu] = rt_rq;
9364    init_rt_rq(rt_rq, rq);
9365    rt_rq->tg = tg;
9366    rt_rq->rt_se = rt_se;
9367    rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9368    if (add)
9369        list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9370
9371    tg->rt_se[cpu] = rt_se;
9372    if (!rt_se)
9373        return;
9374
9375    if (!parent)
9376        rt_se->rt_rq = &rq->rt;
9377    else
9378        rt_se->rt_rq = parent->my_q;
9379
9380    rt_se->my_q = rt_rq;
9381    rt_se->parent = parent;
9382    INIT_LIST_HEAD(&rt_se->run_list);
9383}
9384#endif
9385
9386void __init sched_init(void)
9387{
9388    int i, j;
9389    unsigned long alloc_size = 0, ptr;
9390
9391#ifdef CONFIG_FAIR_GROUP_SCHED
9392    alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9393#endif
9394#ifdef CONFIG_RT_GROUP_SCHED
9395    alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9396#endif
9397#ifdef CONFIG_USER_SCHED
9398    alloc_size *= 2;
9399#endif
9400#ifdef CONFIG_CPUMASK_OFFSTACK
9401    alloc_size += num_possible_cpus() * cpumask_size();
9402#endif
9403    /*
9404     * As sched_init() is called before page_alloc is setup,
9405     * we use alloc_bootmem().
9406     */
9407    if (alloc_size) {
9408        ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9409
9410#ifdef CONFIG_FAIR_GROUP_SCHED
9411        init_task_group.se = (struct sched_entity **)ptr;
9412        ptr += nr_cpu_ids * sizeof(void **);
9413
9414        init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9415        ptr += nr_cpu_ids * sizeof(void **);
9416
9417#ifdef CONFIG_USER_SCHED
9418        root_task_group.se = (struct sched_entity **)ptr;
9419        ptr += nr_cpu_ids * sizeof(void **);
9420
9421        root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9422        ptr += nr_cpu_ids * sizeof(void **);
9423#endif /* CONFIG_USER_SCHED */
9424#endif /* CONFIG_FAIR_GROUP_SCHED */
9425#ifdef CONFIG_RT_GROUP_SCHED
9426        init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9427        ptr += nr_cpu_ids * sizeof(void **);
9428
9429        init_task_group.rt_rq = (struct rt_rq **)ptr;
9430        ptr += nr_cpu_ids * sizeof(void **);
9431
9432#ifdef CONFIG_USER_SCHED
9433        root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9434        ptr += nr_cpu_ids * sizeof(void **);
9435
9436        root_task_group.rt_rq = (struct rt_rq **)ptr;
9437        ptr += nr_cpu_ids * sizeof(void **);
9438#endif /* CONFIG_USER_SCHED */
9439#endif /* CONFIG_RT_GROUP_SCHED */
9440#ifdef CONFIG_CPUMASK_OFFSTACK
9441        for_each_possible_cpu(i) {
9442            per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9443            ptr += cpumask_size();
9444        }
9445#endif /* CONFIG_CPUMASK_OFFSTACK */
9446    }
9447
9448#ifdef CONFIG_SMP
9449    init_defrootdomain();
9450#endif
9451
9452    init_rt_bandwidth(&def_rt_bandwidth,
9453            global_rt_period(), global_rt_runtime());
9454
9455#ifdef CONFIG_RT_GROUP_SCHED
9456    init_rt_bandwidth(&init_task_group.rt_bandwidth,
9457            global_rt_period(), global_rt_runtime());
9458#ifdef CONFIG_USER_SCHED
9459    init_rt_bandwidth(&root_task_group.rt_bandwidth,
9460            global_rt_period(), RUNTIME_INF);
9461#endif /* CONFIG_USER_SCHED */
9462#endif /* CONFIG_RT_GROUP_SCHED */
9463
9464#ifdef CONFIG_GROUP_SCHED
9465    list_add(&init_task_group.list, &task_groups);
9466    INIT_LIST_HEAD(&init_task_group.children);
9467
9468#ifdef CONFIG_USER_SCHED
9469    INIT_LIST_HEAD(&root_task_group.children);
9470    init_task_group.parent = &root_task_group;
9471    list_add(&init_task_group.siblings, &root_task_group.children);
9472#endif /* CONFIG_USER_SCHED */
9473#endif /* CONFIG_GROUP_SCHED */
9474
9475#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9476    update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9477                        __alignof__(unsigned long));
9478#endif
9479    for_each_possible_cpu(i) {
9480        struct rq *rq;
9481
9482        rq = cpu_rq(i);
9483        spin_lock_init(&rq->lock);
9484        rq->nr_running = 0;
9485        rq->calc_load_active = 0;
9486        rq->calc_load_update = jiffies + LOAD_FREQ;
9487        init_cfs_rq(&rq->cfs, rq);
9488        init_rt_rq(&rq->rt, rq);
9489#ifdef CONFIG_FAIR_GROUP_SCHED
9490        init_task_group.shares = init_task_group_load;
9491        INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9492#ifdef CONFIG_CGROUP_SCHED
9493        /*
9494         * How much cpu bandwidth does init_task_group get?
9495         *
9496         * In case of task-groups formed thr' the cgroup filesystem, it
9497         * gets 100% of the cpu resources in the system. This overall
9498         * system cpu resource is divided among the tasks of
9499         * init_task_group and its child task-groups in a fair manner,
9500         * based on each entity's (task or task-group's) weight
9501         * (se->load.weight).
9502         *
9503         * In other words, if init_task_group has 10 tasks of weight
9504         * 1024) and two child groups A0 and A1 (of weight 1024 each),
9505         * then A0's share of the cpu resource is:
9506         *
9507         * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9508         *
9509         * We achieve this by letting init_task_group's tasks sit
9510         * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9511         */
9512        init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9513#elif defined CONFIG_USER_SCHED
9514        root_task_group.shares = NICE_0_LOAD;
9515        init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9516        /*
9517         * In case of task-groups formed thr' the user id of tasks,
9518         * init_task_group represents tasks belonging to root user.
9519         * Hence it forms a sibling of all subsequent groups formed.
9520         * In this case, init_task_group gets only a fraction of overall
9521         * system cpu resource, based on the weight assigned to root
9522         * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9523         * by letting tasks of init_task_group sit in a separate cfs_rq
9524         * (init_tg_cfs_rq) and having one entity represent this group of
9525         * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9526         */
9527        init_tg_cfs_entry(&init_task_group,
9528                &per_cpu(init_tg_cfs_rq, i),
9529                &per_cpu(init_sched_entity, i), i, 1,
9530                root_task_group.se[i]);
9531
9532#endif
9533#endif /* CONFIG_FAIR_GROUP_SCHED */
9534
9535        rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9536#ifdef CONFIG_RT_GROUP_SCHED
9537        INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9538#ifdef CONFIG_CGROUP_SCHED
9539        init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9540#elif defined CONFIG_USER_SCHED
9541        init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9542        init_tg_rt_entry(&init_task_group,
9543                &per_cpu(init_rt_rq, i),
9544                &per_cpu(init_sched_rt_entity, i), i, 1,
9545                root_task_group.rt_se[i]);
9546#endif
9547#endif
9548
9549        for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9550            rq->cpu_load[j] = 0;
9551#ifdef CONFIG_SMP
9552        rq->sd = NULL;
9553        rq->rd = NULL;
9554        rq->post_schedule = 0;
9555        rq->active_balance = 0;
9556        rq->next_balance = jiffies;
9557        rq->push_cpu = 0;
9558        rq->cpu = i;
9559        rq->online = 0;
9560        rq->migration_thread = NULL;
9561        rq->idle_stamp = 0;
9562        rq->avg_idle = 2*sysctl_sched_migration_cost;
9563        INIT_LIST_HEAD(&rq->migration_queue);
9564        rq_attach_root(rq, &def_root_domain);
9565#endif
9566        init_rq_hrtick(rq);
9567        atomic_set(&rq->nr_iowait, 0);
9568    }
9569
9570    set_load_weight(&init_task);
9571
9572#ifdef CONFIG_PREEMPT_NOTIFIERS
9573    INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9574#endif
9575
9576#ifdef CONFIG_SMP
9577    open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9578#endif
9579
9580#ifdef CONFIG_RT_MUTEXES
9581    plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9582#endif
9583
9584    /*
9585     * The boot idle thread does lazy MMU switching as well:
9586     */
9587    atomic_inc(&init_mm.mm_count);
9588    enter_lazy_tlb(&init_mm, current);
9589
9590    /*
9591     * Make us the idle thread. Technically, schedule() should not be
9592     * called from this thread, however somewhere below it might be,
9593     * but because we are the idle thread, we just pick up running again
9594     * when this runqueue becomes "idle".
9595     */
9596    init_idle(current, smp_processor_id());
9597
9598    calc_load_update = jiffies + LOAD_FREQ;
9599
9600    /*
9601     * During early bootup we pretend to be a normal task:
9602     */
9603    current->sched_class = &fair_sched_class;
9604
9605    /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9606    zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9607#ifdef CONFIG_SMP
9608#ifdef CONFIG_NO_HZ
9609    zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9610    alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9611#endif
9612    /* May be allocated at isolcpus cmdline parse time */
9613    if (cpu_isolated_map == NULL)
9614        zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9615#endif /* SMP */
9616
9617    perf_event_init();
9618
9619    scheduler_running = 1;
9620}
9621
9622#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9623static inline int preempt_count_equals(int preempt_offset)
9624{
9625    int nested = preempt_count() & ~PREEMPT_ACTIVE;
9626
9627    return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9628}
9629
9630void __might_sleep(char *file, int line, int preempt_offset)
9631{
9632#ifdef in_atomic
9633    static unsigned long prev_jiffy; /* ratelimiting */
9634
9635    if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9636        system_state != SYSTEM_RUNNING || oops_in_progress)
9637        return;
9638    if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9639        return;
9640    prev_jiffy = jiffies;
9641
9642    printk(KERN_ERR
9643        "BUG: sleeping function called from invalid context at %s:%d\n",
9644            file, line);
9645    printk(KERN_ERR
9646        "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9647            in_atomic(), irqs_disabled(),
9648            current->pid, current->comm);
9649
9650    debug_show_held_locks(current);
9651    if (irqs_disabled())
9652        print_irqtrace_events(current);
9653    dump_stack();
9654#endif
9655}
9656EXPORT_SYMBOL(__might_sleep);
9657#endif
9658
9659#ifdef CONFIG_MAGIC_SYSRQ
9660static void normalize_task(struct rq *rq, struct task_struct *p)
9661{
9662    int on_rq;
9663
9664    update_rq_clock(rq);
9665    on_rq = p->se.on_rq;
9666    if (on_rq)
9667        deactivate_task(rq, p, 0);
9668    __setscheduler(rq, p, SCHED_NORMAL, 0);
9669    if (on_rq) {
9670        activate_task(rq, p, 0);
9671        resched_task(rq->curr);
9672    }
9673}
9674
9675void normalize_rt_tasks(void)
9676{
9677    struct task_struct *g, *p;
9678    unsigned long flags;
9679    struct rq *rq;
9680
9681    read_lock_irqsave(&tasklist_lock, flags);
9682    do_each_thread(g, p) {
9683        /*
9684         * Only normalize user tasks:
9685         */
9686        if (!p->mm)
9687            continue;
9688
9689        p->se.exec_start = 0;
9690#ifdef CONFIG_SCHEDSTATS
9691        p->se.wait_start = 0;
9692        p->se.sleep_start = 0;
9693        p->se.block_start = 0;
9694#endif
9695
9696        if (!rt_task(p)) {
9697            /*
9698             * Renice negative nice level userspace
9699             * tasks back to 0:
9700             */
9701            if (TASK_NICE(p) < 0 && p->mm)
9702                set_user_nice(p, 0);
9703            continue;
9704        }
9705
9706        spin_lock(&p->pi_lock);
9707        rq = __task_rq_lock(p);
9708
9709        normalize_task(rq, p);
9710
9711        __task_rq_unlock(rq);
9712        spin_unlock(&p->pi_lock);
9713    } while_each_thread(g, p);
9714
9715    read_unlock_irqrestore(&tasklist_lock, flags);
9716}
9717
9718#endif /* CONFIG_MAGIC_SYSRQ */
9719
9720#ifdef CONFIG_IA64
9721/*
9722 * These functions are only useful for the IA64 MCA handling.
9723 *
9724 * They can only be called when the whole system has been
9725 * stopped - every CPU needs to be quiescent, and no scheduling
9726 * activity can take place. Using them for anything else would
9727 * be a serious bug, and as a result, they aren't even visible
9728 * under any other configuration.
9729 */
9730
9731/**
9732 * curr_task - return the current task for a given cpu.
9733 * @cpu: the processor in question.
9734 *
9735 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9736 */
9737struct task_struct *curr_task(int cpu)
9738{
9739    return cpu_curr(cpu);
9740}
9741
9742/**
9743 * set_curr_task - set the current task for a given cpu.
9744 * @cpu: the processor in question.
9745 * @p: the task pointer to set.
9746 *
9747 * Description: This function must only be used when non-maskable interrupts
9748 * are serviced on a separate stack. It allows the architecture to switch the
9749 * notion of the current task on a cpu in a non-blocking manner. This function
9750 * must be called with all CPU's synchronized, and interrupts disabled, the
9751 * and caller must save the original value of the current task (see
9752 * curr_task() above) and restore that value before reenabling interrupts and
9753 * re-starting the system.
9754 *
9755 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9756 */
9757void set_curr_task(int cpu, struct task_struct *p)
9758{
9759    cpu_curr(cpu) = p;
9760}
9761
9762#endif
9763
9764#ifdef CONFIG_FAIR_GROUP_SCHED
9765static void free_fair_sched_group(struct task_group *tg)
9766{
9767    int i;
9768
9769    for_each_possible_cpu(i) {
9770        if (tg->cfs_rq)
9771            kfree(tg->cfs_rq[i]);
9772        if (tg->se)
9773            kfree(tg->se[i]);
9774    }
9775
9776    kfree(tg->cfs_rq);
9777    kfree(tg->se);
9778}
9779
9780static
9781int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9782{
9783    struct cfs_rq *cfs_rq;
9784    struct sched_entity *se;
9785    struct rq *rq;
9786    int i;
9787
9788    tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9789    if (!tg->cfs_rq)
9790        goto err;
9791    tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9792    if (!tg->se)
9793        goto err;
9794
9795    tg->shares = NICE_0_LOAD;
9796
9797    for_each_possible_cpu(i) {
9798        rq = cpu_rq(i);
9799
9800        cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9801                      GFP_KERNEL, cpu_to_node(i));
9802        if (!cfs_rq)
9803            goto err;
9804
9805        se = kzalloc_node(sizeof(struct sched_entity),
9806                  GFP_KERNEL, cpu_to_node(i));
9807        if (!se)
9808            goto err;
9809
9810        init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9811    }
9812
9813    return 1;
9814
9815 err:
9816    return 0;
9817}
9818
9819static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9820{
9821    list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9822            &cpu_rq(cpu)->leaf_cfs_rq_list);
9823}
9824
9825static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9826{
9827    list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9828}
9829#else /* !CONFG_FAIR_GROUP_SCHED */
9830static inline void free_fair_sched_group(struct task_group *tg)
9831{
9832}
9833
9834static inline
9835int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9836{
9837    return 1;
9838}
9839
9840static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9841{
9842}
9843
9844static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9845{
9846}
9847#endif /* CONFIG_FAIR_GROUP_SCHED */
9848
9849#ifdef CONFIG_RT_GROUP_SCHED
9850static void free_rt_sched_group(struct task_group *tg)
9851{
9852    int i;
9853
9854    destroy_rt_bandwidth(&tg->rt_bandwidth);
9855
9856    for_each_possible_cpu(i) {
9857        if (tg->rt_rq)
9858            kfree(tg->rt_rq[i]);
9859        if (tg->rt_se)
9860            kfree(tg->rt_se[i]);
9861    }
9862
9863    kfree(tg->rt_rq);
9864    kfree(tg->rt_se);
9865}
9866
9867static
9868int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9869{
9870    struct rt_rq *rt_rq;
9871    struct sched_rt_entity *rt_se;
9872    struct rq *rq;
9873    int i;
9874
9875    tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9876    if (!tg->rt_rq)
9877        goto err;
9878    tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9879    if (!tg->rt_se)
9880        goto err;
9881
9882    init_rt_bandwidth(&tg->rt_bandwidth,
9883            ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9884
9885    for_each_possible_cpu(i) {
9886        rq = cpu_rq(i);
9887
9888        rt_rq = kzalloc_node(sizeof(struct rt_rq),
9889                     GFP_KERNEL, cpu_to_node(i));
9890        if (!rt_rq)
9891            goto err;
9892
9893        rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9894                     GFP_KERNEL, cpu_to_node(i));
9895        if (!rt_se)
9896            goto err;
9897
9898        init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9899    }
9900
9901    return 1;
9902
9903 err:
9904    return 0;
9905}
9906
9907static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9908{
9909    list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9910            &cpu_rq(cpu)->leaf_rt_rq_list);
9911}
9912
9913static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9914{
9915    list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9916}
9917#else /* !CONFIG_RT_GROUP_SCHED */
9918static inline void free_rt_sched_group(struct task_group *tg)
9919{
9920}
9921
9922static inline
9923int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9924{
9925    return 1;
9926}
9927
9928static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9929{
9930}
9931
9932static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9933{
9934}
9935#endif /* CONFIG_RT_GROUP_SCHED */
9936
9937#ifdef CONFIG_GROUP_SCHED
9938static void free_sched_group(struct task_group *tg)
9939{
9940    free_fair_sched_group(tg);
9941    free_rt_sched_group(tg);
9942    kfree(tg);
9943}
9944
9945/* allocate runqueue etc for a new task group */
9946struct task_group *sched_create_group(struct task_group *parent)
9947{
9948    struct task_group *tg;
9949    unsigned long flags;
9950    int i;
9951
9952    tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9953    if (!tg)
9954        return ERR_PTR(-ENOMEM);
9955
9956    if (!alloc_fair_sched_group(tg, parent))
9957        goto err;
9958
9959    if (!alloc_rt_sched_group(tg, parent))
9960        goto err;
9961
9962    spin_lock_irqsave(&task_group_lock, flags);
9963    for_each_possible_cpu(i) {
9964        register_fair_sched_group(tg, i);
9965        register_rt_sched_group(tg, i);
9966    }
9967    list_add_rcu(&tg->list, &task_groups);
9968
9969    WARN_ON(!parent); /* root should already exist */
9970
9971    tg->parent = parent;
9972    INIT_LIST_HEAD(&tg->children);
9973    list_add_rcu(&tg->siblings, &parent->children);
9974    spin_unlock_irqrestore(&task_group_lock, flags);
9975
9976    return tg;
9977
9978err:
9979    free_sched_group(tg);
9980    return ERR_PTR(-ENOMEM);
9981}
9982
9983/* rcu callback to free various structures associated with a task group */
9984static void free_sched_group_rcu(struct rcu_head *rhp)
9985{
9986    /* now it should be safe to free those cfs_rqs */
9987    free_sched_group(container_of(rhp, struct task_group, rcu));
9988}
9989
9990/* Destroy runqueue etc associated with a task group */
9991void sched_destroy_group(struct task_group *tg)
9992{
9993    unsigned long flags;
9994    int i;
9995
9996    spin_lock_irqsave(&task_group_lock, flags);
9997    for_each_possible_cpu(i) {
9998        unregister_fair_sched_group(tg, i);
9999        unregister_rt_sched_group(tg, i);
10000    }
10001    list_del_rcu(&tg->list);
10002    list_del_rcu(&tg->siblings);
10003    spin_unlock_irqrestore(&task_group_lock, flags);
10004
10005    /* wait for possible concurrent references to cfs_rqs complete */
10006    call_rcu(&tg->rcu, free_sched_group_rcu);
10007}
10008
10009/* change task's runqueue when it moves between groups.
10010 * The caller of this function should have put the task in its new group
10011 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10012 * reflect its new group.
10013 */
10014void sched_move_task(struct task_struct *tsk)
10015{
10016    int on_rq, running;
10017    unsigned long flags;
10018    struct rq *rq;
10019
10020    rq = task_rq_lock(tsk, &flags);
10021
10022    update_rq_clock(rq);
10023
10024    running = task_current(rq, tsk);
10025    on_rq = tsk->se.on_rq;
10026
10027    if (on_rq)
10028        dequeue_task(rq, tsk, 0);
10029    if (unlikely(running))
10030        tsk->sched_class->put_prev_task(rq, tsk);
10031
10032    set_task_rq(tsk, task_cpu(tsk));
10033
10034#ifdef CONFIG_FAIR_GROUP_SCHED
10035    if (tsk->sched_class->moved_group)
10036        tsk->sched_class->moved_group(tsk);
10037#endif
10038
10039    if (unlikely(running))
10040        tsk->sched_class->set_curr_task(rq);
10041    if (on_rq)
10042        enqueue_task(rq, tsk, 0);
10043
10044    task_rq_unlock(rq, &flags);
10045}
10046#endif /* CONFIG_GROUP_SCHED */
10047
10048#ifdef CONFIG_FAIR_GROUP_SCHED
10049static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10050{
10051    struct cfs_rq *cfs_rq = se->cfs_rq;
10052    int on_rq;
10053
10054    on_rq = se->on_rq;
10055    if (on_rq)
10056        dequeue_entity(cfs_rq, se, 0);
10057
10058    se->load.weight = shares;
10059    se->load.inv_weight = 0;
10060
10061    if (on_rq)
10062        enqueue_entity(cfs_rq, se, 0);
10063}
10064
10065static void set_se_shares(struct sched_entity *se, unsigned long shares)
10066{
10067    struct cfs_rq *cfs_rq = se->cfs_rq;
10068    struct rq *rq = cfs_rq->rq;
10069    unsigned long flags;
10070
10071    spin_lock_irqsave(&rq->lock, flags);
10072    __set_se_shares(se, shares);
10073    spin_unlock_irqrestore(&rq->lock, flags);
10074}
10075
10076static DEFINE_MUTEX(shares_mutex);
10077
10078int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10079{
10080    int i;
10081    unsigned long flags;
10082
10083    /*
10084     * We can't change the weight of the root cgroup.
10085     */
10086    if (!tg->se[0])
10087        return -EINVAL;
10088
10089    if (shares < MIN_SHARES)
10090        shares = MIN_SHARES;
10091    else if (shares > MAX_SHARES)
10092        shares = MAX_SHARES;
10093
10094    mutex_lock(&shares_mutex);
10095    if (tg->shares == shares)
10096        goto done;
10097
10098    spin_lock_irqsave(&task_group_lock, flags);
10099    for_each_possible_cpu(i)
10100        unregister_fair_sched_group(tg, i);
10101    list_del_rcu(&tg->siblings);
10102    spin_unlock_irqrestore(&task_group_lock, flags);
10103
10104    /* wait for any ongoing reference to this group to finish */
10105    synchronize_sched();
10106
10107    /*
10108     * Now we are free to modify the group's share on each cpu
10109     * w/o tripping rebalance_share or load_balance_fair.
10110     */
10111    tg->shares = shares;
10112    for_each_possible_cpu(i) {
10113        /*
10114         * force a rebalance
10115         */
10116        cfs_rq_set_shares(tg->cfs_rq[i], 0);
10117        set_se_shares(tg->se[i], shares);
10118    }
10119
10120    /*
10121     * Enable load balance activity on this group, by inserting it back on
10122     * each cpu's rq->leaf_cfs_rq_list.
10123     */
10124    spin_lock_irqsave(&task_group_lock, flags);
10125    for_each_possible_cpu(i)
10126        register_fair_sched_group(tg, i);
10127    list_add_rcu(&tg->siblings, &tg->parent->children);
10128    spin_unlock_irqrestore(&task_group_lock, flags);
10129done:
10130    mutex_unlock(&shares_mutex);
10131    return 0;
10132}
10133
10134unsigned long sched_group_shares(struct task_group *tg)
10135{
10136    return tg->shares;
10137}
10138#endif
10139
10140#ifdef CONFIG_RT_GROUP_SCHED
10141/*
10142 * Ensure that the real time constraints are schedulable.
10143 */
10144static DEFINE_MUTEX(rt_constraints_mutex);
10145
10146static unsigned long to_ratio(u64 period, u64 runtime)
10147{
10148    if (runtime == RUNTIME_INF)
10149        return 1ULL << 20;
10150
10151    return div64_u64(runtime << 20, period);
10152}
10153
10154/* Must be called with tasklist_lock held */
10155static inline int tg_has_rt_tasks(struct task_group *tg)
10156{
10157    struct task_struct *g, *p;
10158
10159    do_each_thread(g, p) {
10160        if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10161            return 1;
10162    } while_each_thread(g, p);
10163
10164    return 0;
10165}
10166
10167struct rt_schedulable_data {
10168    struct task_group *tg;
10169    u64 rt_period;
10170    u64 rt_runtime;
10171};
10172
10173static int tg_schedulable(struct task_group *tg, void *data)
10174{
10175    struct rt_schedulable_data *d = data;
10176    struct task_group *child;
10177    unsigned long total, sum = 0;
10178    u64 period, runtime;
10179
10180    period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10181    runtime = tg->rt_bandwidth.rt_runtime;
10182
10183    if (tg == d->tg) {
10184        period = d->rt_period;
10185        runtime = d->rt_runtime;
10186    }
10187
10188#ifdef CONFIG_USER_SCHED
10189    if (tg == &root_task_group) {
10190        period = global_rt_period();
10191        runtime = global_rt_runtime();
10192    }
10193#endif
10194
10195    /*
10196     * Cannot have more runtime than the period.
10197     */
10198    if (runtime > period && runtime != RUNTIME_INF)
10199        return -EINVAL;
10200
10201    /*
10202     * Ensure we don't starve existing RT tasks.
10203     */
10204    if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10205        return -EBUSY;
10206
10207    total = to_ratio(period, runtime);
10208
10209    /*
10210     * Nobody can have more than the global setting allows.
10211     */
10212    if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10213        return -EINVAL;
10214
10215    /*
10216     * The sum of our children's runtime should not exceed our own.
10217     */
10218    list_for_each_entry_rcu(child, &tg->children, siblings) {
10219        period = ktime_to_ns(child->rt_bandwidth.rt_period);
10220        runtime = child->rt_bandwidth.rt_runtime;
10221
10222        if (child == d->tg) {
10223            period = d->rt_period;
10224            runtime = d->rt_runtime;
10225        }
10226
10227        sum += to_ratio(period, runtime);
10228    }
10229
10230    if (sum > total)
10231        return -EINVAL;
10232
10233    return 0;
10234}
10235
10236static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10237{
10238    struct rt_schedulable_data data = {
10239        .tg = tg,
10240        .rt_period = period,
10241        .rt_runtime = runtime,
10242    };
10243
10244    return walk_tg_tree(tg_schedulable, tg_nop, &data);
10245}
10246
10247static int tg_set_bandwidth(struct task_group *tg,
10248        u64 rt_period, u64 rt_runtime)
10249{
10250    int i, err = 0;
10251
10252    mutex_lock(&rt_constraints_mutex);
10253    read_lock(&tasklist_lock);
10254    err = __rt_schedulable(tg, rt_period, rt_runtime);
10255    if (err)
10256        goto unlock;
10257
10258    spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10259    tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10260    tg->rt_bandwidth.rt_runtime = rt_runtime;
10261
10262    for_each_possible_cpu(i) {
10263        struct rt_rq *rt_rq = tg->rt_rq[i];
10264
10265        spin_lock(&rt_rq->rt_runtime_lock);
10266        rt_rq->rt_runtime = rt_runtime;
10267        spin_unlock(&rt_rq->rt_runtime_lock);
10268    }
10269    spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10270 unlock:
10271    read_unlock(&tasklist_lock);
10272    mutex_unlock(&rt_constraints_mutex);
10273
10274    return err;
10275}
10276
10277int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10278{
10279    u64 rt_runtime, rt_period;
10280
10281    rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10282    rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10283    if (rt_runtime_us < 0)
10284        rt_runtime = RUNTIME_INF;
10285
10286    return tg_set_bandwidth(tg, rt_period, rt_runtime);
10287}
10288
10289long sched_group_rt_runtime(struct task_group *tg)
10290{
10291    u64 rt_runtime_us;
10292
10293    if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10294        return -1;
10295
10296    rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10297    do_div(rt_runtime_us, NSEC_PER_USEC);
10298    return rt_runtime_us;
10299}
10300
10301int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10302{
10303    u64 rt_runtime, rt_period;
10304
10305    rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10306    rt_runtime = tg->rt_bandwidth.rt_runtime;
10307
10308    if (rt_period == 0)
10309        return -EINVAL;
10310
10311    return tg_set_bandwidth(tg, rt_period, rt_runtime);
10312}
10313
10314long sched_group_rt_period(struct task_group *tg)
10315{
10316    u64 rt_period_us;
10317
10318    rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10319    do_div(rt_period_us, NSEC_PER_USEC);
10320    return rt_period_us;
10321}
10322
10323static int sched_rt_global_constraints(void)
10324{
10325    u64 runtime, period;
10326    int ret = 0;
10327
10328    if (sysctl_sched_rt_period <= 0)
10329        return -EINVAL;
10330
10331    runtime = global_rt_runtime();
10332    period = global_rt_period();
10333
10334    /*
10335     * Sanity check on the sysctl variables.
10336     */
10337    if (runtime > period && runtime != RUNTIME_INF)
10338        return -EINVAL;
10339
10340    mutex_lock(&rt_constraints_mutex);
10341    read_lock(&tasklist_lock);
10342    ret = __rt_schedulable(NULL, 0, 0);
10343    read_unlock(&tasklist_lock);
10344    mutex_unlock(&rt_constraints_mutex);
10345
10346    return ret;
10347}
10348
10349int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10350{
10351    /* Don't accept realtime tasks when there is no way for them to run */
10352    if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10353        return 0;
10354
10355    return 1;
10356}
10357
10358#else /* !CONFIG_RT_GROUP_SCHED */
10359static int sched_rt_global_constraints(void)
10360{
10361    unsigned long flags;
10362    int i;
10363
10364    if (sysctl_sched_rt_period <= 0)
10365        return -EINVAL;
10366
10367    /*
10368     * There's always some RT tasks in the root group
10369     * -- migration, kstopmachine etc..
10370     */
10371    if (sysctl_sched_rt_runtime == 0)
10372        return -EBUSY;
10373
10374    spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10375    for_each_possible_cpu(i) {
10376        struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10377
10378        spin_lock(&rt_rq->rt_runtime_lock);
10379        rt_rq->rt_runtime = global_rt_runtime();
10380        spin_unlock(&rt_rq->rt_runtime_lock);
10381    }
10382    spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10383
10384    return 0;
10385}
10386#endif /* CONFIG_RT_GROUP_SCHED */
10387
10388int sched_rt_handler(struct ctl_table *table, int write,
10389        void __user *buffer, size_t *lenp,
10390        loff_t *ppos)
10391{
10392    int ret;
10393    int old_period, old_runtime;
10394    static DEFINE_MUTEX(mutex);
10395
10396    mutex_lock(&mutex);
10397    old_period = sysctl_sched_rt_period;
10398    old_runtime = sysctl_sched_rt_runtime;
10399
10400    ret = proc_dointvec(table, write, buffer, lenp, ppos);
10401
10402    if (!ret && write) {
10403        ret = sched_rt_global_constraints();
10404        if (ret) {
10405            sysctl_sched_rt_period = old_period;
10406            sysctl_sched_rt_runtime = old_runtime;
10407        } else {
10408            def_rt_bandwidth.rt_runtime = global_rt_runtime();
10409            def_rt_bandwidth.rt_period =
10410                ns_to_ktime(global_rt_period());
10411        }
10412    }
10413    mutex_unlock(&mutex);
10414
10415    return ret;
10416}
10417
10418#ifdef CONFIG_CGROUP_SCHED
10419
10420/* return corresponding task_group object of a cgroup */
10421static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10422{
10423    return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10424                struct task_group, css);
10425}
10426
10427static struct cgroup_subsys_state *
10428cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10429{
10430    struct task_group *tg, *parent;
10431
10432    if (!cgrp->parent) {
10433        /* This is early initialization for the top cgroup */
10434        return &init_task_group.css;
10435    }
10436
10437    parent = cgroup_tg(cgrp->parent);
10438    tg = sched_create_group(parent);
10439    if (IS_ERR(tg))
10440        return ERR_PTR(-ENOMEM);
10441
10442    return &tg->css;
10443}
10444
10445static void
10446cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10447{
10448    struct task_group *tg = cgroup_tg(cgrp);
10449
10450    sched_destroy_group(tg);
10451}
10452
10453static int
10454cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10455{
10456#ifdef CONFIG_RT_GROUP_SCHED
10457    if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10458        return -EINVAL;
10459#else
10460    /* We don't support RT-tasks being in separate groups */
10461    if (tsk->sched_class != &fair_sched_class)
10462        return -EINVAL;
10463#endif
10464    return 0;
10465}
10466
10467static int
10468cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10469              struct task_struct *tsk, bool threadgroup)
10470{
10471    int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10472    if (retval)
10473        return retval;
10474    if (threadgroup) {
10475        struct task_struct *c;
10476        rcu_read_lock();
10477        list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10478            retval = cpu_cgroup_can_attach_task(cgrp, c);
10479            if (retval) {
10480                rcu_read_unlock();
10481                return retval;
10482            }
10483        }
10484        rcu_read_unlock();
10485    }
10486    return 0;
10487}
10488
10489static void
10490cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10491          struct cgroup *old_cont, struct task_struct *tsk,
10492          bool threadgroup)
10493{
10494    sched_move_task(tsk);
10495    if (threadgroup) {
10496        struct task_struct *c;
10497        rcu_read_lock();
10498        list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10499            sched_move_task(c);
10500        }
10501        rcu_read_unlock();
10502    }
10503}
10504
10505#ifdef CONFIG_FAIR_GROUP_SCHED
10506static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10507                u64 shareval)
10508{
10509    return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10510}
10511
10512static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10513{
10514    struct task_group *tg = cgroup_tg(cgrp);
10515
10516    return (u64) tg->shares;
10517}
10518#endif /* CONFIG_FAIR_GROUP_SCHED */
10519
10520#ifdef CONFIG_RT_GROUP_SCHED
10521static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10522                s64 val)
10523{
10524    return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10525}
10526
10527static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10528{
10529    return sched_group_rt_runtime(cgroup_tg(cgrp));
10530}
10531
10532static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10533        u64 rt_period_us)
10534{
10535    return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10536}
10537
10538static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10539{
10540    return sched_group_rt_period(cgroup_tg(cgrp));
10541}
10542#endif /* CONFIG_RT_GROUP_SCHED */
10543
10544static struct cftype cpu_files[] = {
10545#ifdef CONFIG_FAIR_GROUP_SCHED
10546    {
10547        .name = "shares",
10548        .read_u64 = cpu_shares_read_u64,
10549        .write_u64 = cpu_shares_write_u64,
10550    },
10551#endif
10552#ifdef CONFIG_RT_GROUP_SCHED
10553    {
10554        .name = "rt_runtime_us",
10555        .read_s64 = cpu_rt_runtime_read,
10556        .write_s64 = cpu_rt_runtime_write,
10557    },
10558    {
10559        .name = "rt_period_us",
10560        .read_u64 = cpu_rt_period_read_uint,
10561        .write_u64 = cpu_rt_period_write_uint,
10562    },
10563#endif
10564};
10565
10566static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10567{
10568    return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10569}
10570
10571struct cgroup_subsys cpu_cgroup_subsys = {
10572    .name = "cpu",
10573    .create = cpu_cgroup_create,
10574    .destroy = cpu_cgroup_destroy,
10575    .can_attach = cpu_cgroup_can_attach,
10576    .attach = cpu_cgroup_attach,
10577    .populate = cpu_cgroup_populate,
10578    .subsys_id = cpu_cgroup_subsys_id,
10579    .early_init = 1,
10580};
10581
10582#endif /* CONFIG_CGROUP_SCHED */
10583
10584#ifdef CONFIG_CGROUP_CPUACCT
10585
10586/*
10587 * CPU accounting code for task groups.
10588 *
10589 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10590 * (balbir@in.ibm.com).
10591 */
10592
10593/* track cpu usage of a group of tasks and its child groups */
10594struct cpuacct {
10595    struct cgroup_subsys_state css;
10596    /* cpuusage holds pointer to a u64-type object on every cpu */
10597    u64 *cpuusage;
10598    struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10599    struct cpuacct *parent;
10600};
10601
10602struct cgroup_subsys cpuacct_subsys;
10603
10604/* return cpu accounting group corresponding to this container */
10605static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10606{
10607    return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10608                struct cpuacct, css);
10609}
10610
10611/* return cpu accounting group to which this task belongs */
10612static inline struct cpuacct *task_ca(struct task_struct *tsk)
10613{
10614    return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10615                struct cpuacct, css);
10616}
10617
10618/* create a new cpu accounting group */
10619static struct cgroup_subsys_state *cpuacct_create(
10620    struct cgroup_subsys *ss, struct cgroup *cgrp)
10621{
10622    struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10623    int i;
10624
10625    if (!ca)
10626        goto out;
10627
10628    ca->cpuusage = alloc_percpu(u64);
10629    if (!ca->cpuusage)
10630        goto out_free_ca;
10631
10632    for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10633        if (percpu_counter_init(&ca->cpustat[i], 0))
10634            goto out_free_counters;
10635
10636    if (cgrp->parent)
10637        ca->parent = cgroup_ca(cgrp->parent);
10638
10639    return &ca->css;
10640
10641out_free_counters:
10642    while (--i >= 0)
10643        percpu_counter_destroy(&ca->cpustat[i]);
10644    free_percpu(ca->cpuusage);
10645out_free_ca:
10646    kfree(ca);
10647out:
10648    return ERR_PTR(-ENOMEM);
10649}
10650
10651/* destroy an existing cpu accounting group */
10652static void
10653cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10654{
10655    struct cpuacct *ca = cgroup_ca(cgrp);
10656    int i;
10657
10658    for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10659        percpu_counter_destroy(&ca->cpustat[i]);
10660    free_percpu(ca->cpuusage);
10661    kfree(ca);
10662}
10663
10664static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10665{
10666    u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10667    u64 data;
10668
10669#ifndef CONFIG_64BIT
10670    /*
10671     * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10672     */
10673    spin_lock_irq(&cpu_rq(cpu)->lock);
10674    data = *cpuusage;
10675    spin_unlock_irq(&cpu_rq(cpu)->lock);
10676#else
10677    data = *cpuusage;
10678#endif
10679
10680    return data;
10681}
10682
10683static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10684{
10685    u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10686
10687#ifndef CONFIG_64BIT
10688    /*
10689     * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10690     */
10691    spin_lock_irq(&cpu_rq(cpu)->lock);
10692    *cpuusage = val;
10693    spin_unlock_irq(&cpu_rq(cpu)->lock);
10694#else
10695    *cpuusage = val;
10696#endif
10697}
10698
10699/* return total cpu usage (in nanoseconds) of a group */
10700static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10701{
10702    struct cpuacct *ca = cgroup_ca(cgrp);
10703    u64 totalcpuusage = 0;
10704    int i;
10705
10706    for_each_present_cpu(i)
10707        totalcpuusage += cpuacct_cpuusage_read(ca, i);
10708
10709    return totalcpuusage;
10710}
10711
10712static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10713                                u64 reset)
10714{
10715    struct cpuacct *ca = cgroup_ca(cgrp);
10716    int err = 0;
10717    int i;
10718
10719    if (reset) {
10720        err = -EINVAL;
10721        goto out;
10722    }
10723
10724    for_each_present_cpu(i)
10725        cpuacct_cpuusage_write(ca, i, 0);
10726
10727out:
10728    return err;
10729}
10730
10731static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10732                   struct seq_file *m)
10733{
10734    struct cpuacct *ca = cgroup_ca(cgroup);
10735    u64 percpu;
10736    int i;
10737
10738    for_each_present_cpu(i) {
10739        percpu = cpuacct_cpuusage_read(ca, i);
10740        seq_printf(m, "%llu ", (unsigned long long) percpu);
10741    }
10742    seq_printf(m, "\n");
10743    return 0;
10744}
10745
10746static const char *cpuacct_stat_desc[] = {
10747    [CPUACCT_STAT_USER] = "user",
10748    [CPUACCT_STAT_SYSTEM] = "system",
10749};
10750
10751static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10752        struct cgroup_map_cb *cb)
10753{
10754    struct cpuacct *ca = cgroup_ca(cgrp);
10755    int i;
10756
10757    for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10758        s64 val = percpu_counter_read(&ca->cpustat[i]);
10759        val = cputime64_to_clock_t(val);
10760        cb->fill(cb, cpuacct_stat_desc[i], val);
10761    }
10762    return 0;
10763}
10764
10765static struct cftype files[] = {
10766    {
10767        .name = "usage",
10768        .read_u64 = cpuusage_read,
10769        .write_u64 = cpuusage_write,
10770    },
10771    {
10772        .name = "usage_percpu",
10773        .read_seq_string = cpuacct_percpu_seq_read,
10774    },
10775    {
10776        .name = "stat",
10777        .read_map = cpuacct_stats_show,
10778    },
10779};
10780
10781static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10782{
10783    return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10784}
10785
10786/*
10787 * charge this task's execution time to its accounting group.
10788 *
10789 * called with rq->lock held.
10790 */
10791static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10792{
10793    struct cpuacct *ca;
10794    int cpu;
10795
10796    if (unlikely(!cpuacct_subsys.active))
10797        return;
10798
10799    cpu = task_cpu(tsk);
10800
10801    rcu_read_lock();
10802
10803    ca = task_ca(tsk);
10804
10805    for (; ca; ca = ca->parent) {
10806        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10807        *cpuusage += cputime;
10808    }
10809
10810    rcu_read_unlock();
10811}
10812
10813/*
10814 * Charge the system/user time to the task's accounting group.
10815 */
10816static void cpuacct_update_stats(struct task_struct *tsk,
10817        enum cpuacct_stat_index idx, cputime_t val)
10818{
10819    struct cpuacct *ca;
10820
10821    if (unlikely(!cpuacct_subsys.active))
10822        return;
10823
10824    rcu_read_lock();
10825    ca = task_ca(tsk);
10826
10827    do {
10828        percpu_counter_add(&ca->cpustat[idx], val);
10829        ca = ca->parent;
10830    } while (ca);
10831    rcu_read_unlock();
10832}
10833
10834struct cgroup_subsys cpuacct_subsys = {
10835    .name = "cpuacct",
10836    .create = cpuacct_create,
10837    .destroy = cpuacct_destroy,
10838    .populate = cpuacct_populate,
10839    .subsys_id = cpuacct_subsys_id,
10840};
10841#endif /* CONFIG_CGROUP_CPUACCT */
10842
10843#ifndef CONFIG_SMP
10844
10845int rcu_expedited_torture_stats(char *page)
10846{
10847    return 0;
10848}
10849EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10850
10851void synchronize_sched_expedited(void)
10852{
10853}
10854EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10855
10856#else /* #ifndef CONFIG_SMP */
10857
10858static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10859static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10860
10861#define RCU_EXPEDITED_STATE_POST -2
10862#define RCU_EXPEDITED_STATE_IDLE -1
10863
10864static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10865
10866int rcu_expedited_torture_stats(char *page)
10867{
10868    int cnt = 0;
10869    int cpu;
10870
10871    cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10872    for_each_online_cpu(cpu) {
10873         cnt += sprintf(&page[cnt], " %d:%d",
10874                cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10875    }
10876    cnt += sprintf(&page[cnt], "\n");
10877    return cnt;
10878}
10879EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10880
10881static long synchronize_sched_expedited_count;
10882
10883/*
10884 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10885 * approach to force grace period to end quickly. This consumes
10886 * significant time on all CPUs, and is thus not recommended for
10887 * any sort of common-case code.
10888 *
10889 * Note that it is illegal to call this function while holding any
10890 * lock that is acquired by a CPU-hotplug notifier. Failing to
10891 * observe this restriction will result in deadlock.
10892 */
10893void synchronize_sched_expedited(void)
10894{
10895    int cpu;
10896    unsigned long flags;
10897    bool need_full_sync = 0;
10898    struct rq *rq;
10899    struct migration_req *req;
10900    long snap;
10901    int trycount = 0;
10902
10903    smp_mb(); /* ensure prior mod happens before capturing snap. */
10904    snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10905    get_online_cpus();
10906    while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10907        put_online_cpus();
10908        if (trycount++ < 10)
10909            udelay(trycount * num_online_cpus());
10910        else {
10911            synchronize_sched();
10912            return;
10913        }
10914        if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10915            smp_mb(); /* ensure test happens before caller kfree */
10916            return;
10917        }
10918        get_online_cpus();
10919    }
10920    rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10921    for_each_online_cpu(cpu) {
10922        rq = cpu_rq(cpu);
10923        req = &per_cpu(rcu_migration_req, cpu);
10924        init_completion(&req->done);
10925        req->task = NULL;
10926        req->dest_cpu = RCU_MIGRATION_NEED_QS;
10927        spin_lock_irqsave(&rq->lock, flags);
10928        list_add(&req->list, &rq->migration_queue);
10929        spin_unlock_irqrestore(&rq->lock, flags);
10930        wake_up_process(rq->migration_thread);
10931    }
10932    for_each_online_cpu(cpu) {
10933        rcu_expedited_state = cpu;
10934        req = &per_cpu(rcu_migration_req, cpu);
10935        rq = cpu_rq(cpu);
10936        wait_for_completion(&req->done);
10937        spin_lock_irqsave(&rq->lock, flags);
10938        if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10939            need_full_sync = 1;
10940        req->dest_cpu = RCU_MIGRATION_IDLE;
10941        spin_unlock_irqrestore(&rq->lock, flags);
10942    }
10943    rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10944    mutex_unlock(&rcu_sched_expedited_mutex);
10945    put_online_cpus();
10946    if (need_full_sync)
10947        synchronize_sched();
10948}
10949EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10950
10951#endif /* #else #ifndef CONFIG_SMP */
10952

Archive Download this file



interactive