Root/
| 1 | /* |
| 2 | * linux/kernel/signal.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | * |
| 6 | * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson |
| 7 | * |
| 8 | * 2003-06-02 Jim Houston - Concurrent Computer Corp. |
| 9 | * Changes to use preallocated sigqueue structures |
| 10 | * to allow signals to be sent reliably. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/fs.h> |
| 18 | #include <linux/tty.h> |
| 19 | #include <linux/binfmts.h> |
| 20 | #include <linux/security.h> |
| 21 | #include <linux/syscalls.h> |
| 22 | #include <linux/ptrace.h> |
| 23 | #include <linux/signal.h> |
| 24 | #include <linux/signalfd.h> |
| 25 | #include <linux/tracehook.h> |
| 26 | #include <linux/capability.h> |
| 27 | #include <linux/freezer.h> |
| 28 | #include <linux/pid_namespace.h> |
| 29 | #include <linux/nsproxy.h> |
| 30 | #include <trace/events/sched.h> |
| 31 | |
| 32 | #include <asm/param.h> |
| 33 | #include <asm/uaccess.h> |
| 34 | #include <asm/unistd.h> |
| 35 | #include <asm/siginfo.h> |
| 36 | #include "audit.h" /* audit_signal_info() */ |
| 37 | |
| 38 | /* |
| 39 | * SLAB caches for signal bits. |
| 40 | */ |
| 41 | |
| 42 | static struct kmem_cache *sigqueue_cachep; |
| 43 | |
| 44 | static void __user *sig_handler(struct task_struct *t, int sig) |
| 45 | { |
| 46 | return t->sighand->action[sig - 1].sa.sa_handler; |
| 47 | } |
| 48 | |
| 49 | static int sig_handler_ignored(void __user *handler, int sig) |
| 50 | { |
| 51 | /* Is it explicitly or implicitly ignored? */ |
| 52 | return handler == SIG_IGN || |
| 53 | (handler == SIG_DFL && sig_kernel_ignore(sig)); |
| 54 | } |
| 55 | |
| 56 | static int sig_task_ignored(struct task_struct *t, int sig, |
| 57 | int from_ancestor_ns) |
| 58 | { |
| 59 | void __user *handler; |
| 60 | |
| 61 | handler = sig_handler(t, sig); |
| 62 | |
| 63 | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && |
| 64 | handler == SIG_DFL && !from_ancestor_ns) |
| 65 | return 1; |
| 66 | |
| 67 | return sig_handler_ignored(handler, sig); |
| 68 | } |
| 69 | |
| 70 | static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) |
| 71 | { |
| 72 | /* |
| 73 | * Blocked signals are never ignored, since the |
| 74 | * signal handler may change by the time it is |
| 75 | * unblocked. |
| 76 | */ |
| 77 | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) |
| 78 | return 0; |
| 79 | |
| 80 | if (!sig_task_ignored(t, sig, from_ancestor_ns)) |
| 81 | return 0; |
| 82 | |
| 83 | /* |
| 84 | * Tracers may want to know about even ignored signals. |
| 85 | */ |
| 86 | return !tracehook_consider_ignored_signal(t, sig); |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * Re-calculate pending state from the set of locally pending |
| 91 | * signals, globally pending signals, and blocked signals. |
| 92 | */ |
| 93 | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) |
| 94 | { |
| 95 | unsigned long ready; |
| 96 | long i; |
| 97 | |
| 98 | switch (_NSIG_WORDS) { |
| 99 | default: |
| 100 | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) |
| 101 | ready |= signal->sig[i] &~ blocked->sig[i]; |
| 102 | break; |
| 103 | |
| 104 | case 4: ready = signal->sig[3] &~ blocked->sig[3]; |
| 105 | ready |= signal->sig[2] &~ blocked->sig[2]; |
| 106 | ready |= signal->sig[1] &~ blocked->sig[1]; |
| 107 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 108 | break; |
| 109 | |
| 110 | case 2: ready = signal->sig[1] &~ blocked->sig[1]; |
| 111 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 112 | break; |
| 113 | |
| 114 | case 1: ready = signal->sig[0] &~ blocked->sig[0]; |
| 115 | } |
| 116 | return ready != 0; |
| 117 | } |
| 118 | |
| 119 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) |
| 120 | |
| 121 | static int recalc_sigpending_tsk(struct task_struct *t) |
| 122 | { |
| 123 | if (t->signal->group_stop_count > 0 || |
| 124 | PENDING(&t->pending, &t->blocked) || |
| 125 | PENDING(&t->signal->shared_pending, &t->blocked)) { |
| 126 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 127 | return 1; |
| 128 | } |
| 129 | /* |
| 130 | * We must never clear the flag in another thread, or in current |
| 131 | * when it's possible the current syscall is returning -ERESTART*. |
| 132 | * So we don't clear it here, and only callers who know they should do. |
| 133 | */ |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. |
| 139 | * This is superfluous when called on current, the wakeup is a harmless no-op. |
| 140 | */ |
| 141 | void recalc_sigpending_and_wake(struct task_struct *t) |
| 142 | { |
| 143 | if (recalc_sigpending_tsk(t)) |
| 144 | signal_wake_up(t, 0); |
| 145 | } |
| 146 | |
| 147 | void recalc_sigpending(void) |
| 148 | { |
| 149 | if (unlikely(tracehook_force_sigpending())) |
| 150 | set_thread_flag(TIF_SIGPENDING); |
| 151 | else if (!recalc_sigpending_tsk(current) && !freezing(current)) |
| 152 | clear_thread_flag(TIF_SIGPENDING); |
| 153 | |
| 154 | } |
| 155 | |
| 156 | /* Given the mask, find the first available signal that should be serviced. */ |
| 157 | |
| 158 | int next_signal(struct sigpending *pending, sigset_t *mask) |
| 159 | { |
| 160 | unsigned long i, *s, *m, x; |
| 161 | int sig = 0; |
| 162 | |
| 163 | s = pending->signal.sig; |
| 164 | m = mask->sig; |
| 165 | switch (_NSIG_WORDS) { |
| 166 | default: |
| 167 | for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) |
| 168 | if ((x = *s &~ *m) != 0) { |
| 169 | sig = ffz(~x) + i*_NSIG_BPW + 1; |
| 170 | break; |
| 171 | } |
| 172 | break; |
| 173 | |
| 174 | case 2: if ((x = s[0] &~ m[0]) != 0) |
| 175 | sig = 1; |
| 176 | else if ((x = s[1] &~ m[1]) != 0) |
| 177 | sig = _NSIG_BPW + 1; |
| 178 | else |
| 179 | break; |
| 180 | sig += ffz(~x); |
| 181 | break; |
| 182 | |
| 183 | case 1: if ((x = *s &~ *m) != 0) |
| 184 | sig = ffz(~x) + 1; |
| 185 | break; |
| 186 | } |
| 187 | |
| 188 | return sig; |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * allocate a new signal queue record |
| 193 | * - this may be called without locks if and only if t == current, otherwise an |
| 194 | * appopriate lock must be held to stop the target task from exiting |
| 195 | */ |
| 196 | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, |
| 197 | int override_rlimit) |
| 198 | { |
| 199 | struct sigqueue *q = NULL; |
| 200 | struct user_struct *user; |
| 201 | |
| 202 | /* |
| 203 | * We won't get problems with the target's UID changing under us |
| 204 | * because changing it requires RCU be used, and if t != current, the |
| 205 | * caller must be holding the RCU readlock (by way of a spinlock) and |
| 206 | * we use RCU protection here |
| 207 | */ |
| 208 | user = get_uid(__task_cred(t)->user); |
| 209 | atomic_inc(&user->sigpending); |
| 210 | if (override_rlimit || |
| 211 | atomic_read(&user->sigpending) <= |
| 212 | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) |
| 213 | q = kmem_cache_alloc(sigqueue_cachep, flags); |
| 214 | if (unlikely(q == NULL)) { |
| 215 | atomic_dec(&user->sigpending); |
| 216 | free_uid(user); |
| 217 | } else { |
| 218 | INIT_LIST_HEAD(&q->list); |
| 219 | q->flags = 0; |
| 220 | q->user = user; |
| 221 | } |
| 222 | |
| 223 | return q; |
| 224 | } |
| 225 | |
| 226 | static void __sigqueue_free(struct sigqueue *q) |
| 227 | { |
| 228 | if (q->flags & SIGQUEUE_PREALLOC) |
| 229 | return; |
| 230 | atomic_dec(&q->user->sigpending); |
| 231 | free_uid(q->user); |
| 232 | kmem_cache_free(sigqueue_cachep, q); |
| 233 | } |
| 234 | |
| 235 | void flush_sigqueue(struct sigpending *queue) |
| 236 | { |
| 237 | struct sigqueue *q; |
| 238 | |
| 239 | sigemptyset(&queue->signal); |
| 240 | while (!list_empty(&queue->list)) { |
| 241 | q = list_entry(queue->list.next, struct sigqueue , list); |
| 242 | list_del_init(&q->list); |
| 243 | __sigqueue_free(q); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Flush all pending signals for a task. |
| 249 | */ |
| 250 | void __flush_signals(struct task_struct *t) |
| 251 | { |
| 252 | clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| 253 | flush_sigqueue(&t->pending); |
| 254 | flush_sigqueue(&t->signal->shared_pending); |
| 255 | } |
| 256 | |
| 257 | void flush_signals(struct task_struct *t) |
| 258 | { |
| 259 | unsigned long flags; |
| 260 | |
| 261 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 262 | __flush_signals(t); |
| 263 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| 264 | } |
| 265 | |
| 266 | static void __flush_itimer_signals(struct sigpending *pending) |
| 267 | { |
| 268 | sigset_t signal, retain; |
| 269 | struct sigqueue *q, *n; |
| 270 | |
| 271 | signal = pending->signal; |
| 272 | sigemptyset(&retain); |
| 273 | |
| 274 | list_for_each_entry_safe(q, n, &pending->list, list) { |
| 275 | int sig = q->info.si_signo; |
| 276 | |
| 277 | if (likely(q->info.si_code != SI_TIMER)) { |
| 278 | sigaddset(&retain, sig); |
| 279 | } else { |
| 280 | sigdelset(&signal, sig); |
| 281 | list_del_init(&q->list); |
| 282 | __sigqueue_free(q); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | sigorsets(&pending->signal, &signal, &retain); |
| 287 | } |
| 288 | |
| 289 | void flush_itimer_signals(void) |
| 290 | { |
| 291 | struct task_struct *tsk = current; |
| 292 | unsigned long flags; |
| 293 | |
| 294 | spin_lock_irqsave(&tsk->sighand->siglock, flags); |
| 295 | __flush_itimer_signals(&tsk->pending); |
| 296 | __flush_itimer_signals(&tsk->signal->shared_pending); |
| 297 | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); |
| 298 | } |
| 299 | |
| 300 | void ignore_signals(struct task_struct *t) |
| 301 | { |
| 302 | int i; |
| 303 | |
| 304 | for (i = 0; i < _NSIG; ++i) |
| 305 | t->sighand->action[i].sa.sa_handler = SIG_IGN; |
| 306 | |
| 307 | flush_signals(t); |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Flush all handlers for a task. |
| 312 | */ |
| 313 | |
| 314 | void |
| 315 | flush_signal_handlers(struct task_struct *t, int force_default) |
| 316 | { |
| 317 | int i; |
| 318 | struct k_sigaction *ka = &t->sighand->action[0]; |
| 319 | for (i = _NSIG ; i != 0 ; i--) { |
| 320 | if (force_default || ka->sa.sa_handler != SIG_IGN) |
| 321 | ka->sa.sa_handler = SIG_DFL; |
| 322 | ka->sa.sa_flags = 0; |
| 323 | sigemptyset(&ka->sa.sa_mask); |
| 324 | ka++; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | int unhandled_signal(struct task_struct *tsk, int sig) |
| 329 | { |
| 330 | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; |
| 331 | if (is_global_init(tsk)) |
| 332 | return 1; |
| 333 | if (handler != SIG_IGN && handler != SIG_DFL) |
| 334 | return 0; |
| 335 | return !tracehook_consider_fatal_signal(tsk, sig); |
| 336 | } |
| 337 | |
| 338 | |
| 339 | /* Notify the system that a driver wants to block all signals for this |
| 340 | * process, and wants to be notified if any signals at all were to be |
| 341 | * sent/acted upon. If the notifier routine returns non-zero, then the |
| 342 | * signal will be acted upon after all. If the notifier routine returns 0, |
| 343 | * then then signal will be blocked. Only one block per process is |
| 344 | * allowed. priv is a pointer to private data that the notifier routine |
| 345 | * can use to determine if the signal should be blocked or not. */ |
| 346 | |
| 347 | void |
| 348 | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) |
| 349 | { |
| 350 | unsigned long flags; |
| 351 | |
| 352 | spin_lock_irqsave(¤t->sighand->siglock, flags); |
| 353 | current->notifier_mask = mask; |
| 354 | current->notifier_data = priv; |
| 355 | current->notifier = notifier; |
| 356 | spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| 357 | } |
| 358 | |
| 359 | /* Notify the system that blocking has ended. */ |
| 360 | |
| 361 | void |
| 362 | unblock_all_signals(void) |
| 363 | { |
| 364 | unsigned long flags; |
| 365 | |
| 366 | spin_lock_irqsave(¤t->sighand->siglock, flags); |
| 367 | current->notifier = NULL; |
| 368 | current->notifier_data = NULL; |
| 369 | recalc_sigpending(); |
| 370 | spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| 371 | } |
| 372 | |
| 373 | static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) |
| 374 | { |
| 375 | struct sigqueue *q, *first = NULL; |
| 376 | |
| 377 | /* |
| 378 | * Collect the siginfo appropriate to this signal. Check if |
| 379 | * there is another siginfo for the same signal. |
| 380 | */ |
| 381 | list_for_each_entry(q, &list->list, list) { |
| 382 | if (q->info.si_signo == sig) { |
| 383 | if (first) |
| 384 | goto still_pending; |
| 385 | first = q; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | sigdelset(&list->signal, sig); |
| 390 | |
| 391 | if (first) { |
| 392 | still_pending: |
| 393 | list_del_init(&first->list); |
| 394 | copy_siginfo(info, &first->info); |
| 395 | __sigqueue_free(first); |
| 396 | } else { |
| 397 | /* Ok, it wasn't in the queue. This must be |
| 398 | a fast-pathed signal or we must have been |
| 399 | out of queue space. So zero out the info. |
| 400 | */ |
| 401 | info->si_signo = sig; |
| 402 | info->si_errno = 0; |
| 403 | info->si_code = 0; |
| 404 | info->si_pid = 0; |
| 405 | info->si_uid = 0; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, |
| 410 | siginfo_t *info) |
| 411 | { |
| 412 | int sig = next_signal(pending, mask); |
| 413 | |
| 414 | if (sig) { |
| 415 | if (current->notifier) { |
| 416 | if (sigismember(current->notifier_mask, sig)) { |
| 417 | if (!(current->notifier)(current->notifier_data)) { |
| 418 | clear_thread_flag(TIF_SIGPENDING); |
| 419 | return 0; |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | collect_signal(sig, pending, info); |
| 425 | } |
| 426 | |
| 427 | return sig; |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * Dequeue a signal and return the element to the caller, which is |
| 432 | * expected to free it. |
| 433 | * |
| 434 | * All callers have to hold the siglock. |
| 435 | */ |
| 436 | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) |
| 437 | { |
| 438 | int signr; |
| 439 | |
| 440 | /* We only dequeue private signals from ourselves, we don't let |
| 441 | * signalfd steal them |
| 442 | */ |
| 443 | signr = __dequeue_signal(&tsk->pending, mask, info); |
| 444 | if (!signr) { |
| 445 | signr = __dequeue_signal(&tsk->signal->shared_pending, |
| 446 | mask, info); |
| 447 | /* |
| 448 | * itimer signal ? |
| 449 | * |
| 450 | * itimers are process shared and we restart periodic |
| 451 | * itimers in the signal delivery path to prevent DoS |
| 452 | * attacks in the high resolution timer case. This is |
| 453 | * compliant with the old way of self restarting |
| 454 | * itimers, as the SIGALRM is a legacy signal and only |
| 455 | * queued once. Changing the restart behaviour to |
| 456 | * restart the timer in the signal dequeue path is |
| 457 | * reducing the timer noise on heavy loaded !highres |
| 458 | * systems too. |
| 459 | */ |
| 460 | if (unlikely(signr == SIGALRM)) { |
| 461 | struct hrtimer *tmr = &tsk->signal->real_timer; |
| 462 | |
| 463 | if (!hrtimer_is_queued(tmr) && |
| 464 | tsk->signal->it_real_incr.tv64 != 0) { |
| 465 | hrtimer_forward(tmr, tmr->base->get_time(), |
| 466 | tsk->signal->it_real_incr); |
| 467 | hrtimer_restart(tmr); |
| 468 | } |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | recalc_sigpending(); |
| 473 | if (!signr) |
| 474 | return 0; |
| 475 | |
| 476 | if (unlikely(sig_kernel_stop(signr))) { |
| 477 | /* |
| 478 | * Set a marker that we have dequeued a stop signal. Our |
| 479 | * caller might release the siglock and then the pending |
| 480 | * stop signal it is about to process is no longer in the |
| 481 | * pending bitmasks, but must still be cleared by a SIGCONT |
| 482 | * (and overruled by a SIGKILL). So those cases clear this |
| 483 | * shared flag after we've set it. Note that this flag may |
| 484 | * remain set after the signal we return is ignored or |
| 485 | * handled. That doesn't matter because its only purpose |
| 486 | * is to alert stop-signal processing code when another |
| 487 | * processor has come along and cleared the flag. |
| 488 | */ |
| 489 | tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; |
| 490 | } |
| 491 | if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { |
| 492 | /* |
| 493 | * Release the siglock to ensure proper locking order |
| 494 | * of timer locks outside of siglocks. Note, we leave |
| 495 | * irqs disabled here, since the posix-timers code is |
| 496 | * about to disable them again anyway. |
| 497 | */ |
| 498 | spin_unlock(&tsk->sighand->siglock); |
| 499 | do_schedule_next_timer(info); |
| 500 | spin_lock(&tsk->sighand->siglock); |
| 501 | } |
| 502 | return signr; |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * Tell a process that it has a new active signal.. |
| 507 | * |
| 508 | * NOTE! we rely on the previous spin_lock to |
| 509 | * lock interrupts for us! We can only be called with |
| 510 | * "siglock" held, and the local interrupt must |
| 511 | * have been disabled when that got acquired! |
| 512 | * |
| 513 | * No need to set need_resched since signal event passing |
| 514 | * goes through ->blocked |
| 515 | */ |
| 516 | void signal_wake_up(struct task_struct *t, int resume) |
| 517 | { |
| 518 | unsigned int mask; |
| 519 | |
| 520 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 521 | |
| 522 | /* |
| 523 | * For SIGKILL, we want to wake it up in the stopped/traced/killable |
| 524 | * case. We don't check t->state here because there is a race with it |
| 525 | * executing another processor and just now entering stopped state. |
| 526 | * By using wake_up_state, we ensure the process will wake up and |
| 527 | * handle its death signal. |
| 528 | */ |
| 529 | mask = TASK_INTERRUPTIBLE; |
| 530 | if (resume) |
| 531 | mask |= TASK_WAKEKILL; |
| 532 | if (!wake_up_state(t, mask)) |
| 533 | kick_process(t); |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Remove signals in mask from the pending set and queue. |
| 538 | * Returns 1 if any signals were found. |
| 539 | * |
| 540 | * All callers must be holding the siglock. |
| 541 | * |
| 542 | * This version takes a sigset mask and looks at all signals, |
| 543 | * not just those in the first mask word. |
| 544 | */ |
| 545 | static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) |
| 546 | { |
| 547 | struct sigqueue *q, *n; |
| 548 | sigset_t m; |
| 549 | |
| 550 | sigandsets(&m, mask, &s->signal); |
| 551 | if (sigisemptyset(&m)) |
| 552 | return 0; |
| 553 | |
| 554 | signandsets(&s->signal, &s->signal, mask); |
| 555 | list_for_each_entry_safe(q, n, &s->list, list) { |
| 556 | if (sigismember(mask, q->info.si_signo)) { |
| 557 | list_del_init(&q->list); |
| 558 | __sigqueue_free(q); |
| 559 | } |
| 560 | } |
| 561 | return 1; |
| 562 | } |
| 563 | /* |
| 564 | * Remove signals in mask from the pending set and queue. |
| 565 | * Returns 1 if any signals were found. |
| 566 | * |
| 567 | * All callers must be holding the siglock. |
| 568 | */ |
| 569 | static int rm_from_queue(unsigned long mask, struct sigpending *s) |
| 570 | { |
| 571 | struct sigqueue *q, *n; |
| 572 | |
| 573 | if (!sigtestsetmask(&s->signal, mask)) |
| 574 | return 0; |
| 575 | |
| 576 | sigdelsetmask(&s->signal, mask); |
| 577 | list_for_each_entry_safe(q, n, &s->list, list) { |
| 578 | if (q->info.si_signo < SIGRTMIN && |
| 579 | (mask & sigmask(q->info.si_signo))) { |
| 580 | list_del_init(&q->list); |
| 581 | __sigqueue_free(q); |
| 582 | } |
| 583 | } |
| 584 | return 1; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Bad permissions for sending the signal |
| 589 | * - the caller must hold at least the RCU read lock |
| 590 | */ |
| 591 | static int check_kill_permission(int sig, struct siginfo *info, |
| 592 | struct task_struct *t) |
| 593 | { |
| 594 | const struct cred *cred = current_cred(), *tcred; |
| 595 | struct pid *sid; |
| 596 | int error; |
| 597 | |
| 598 | if (!valid_signal(sig)) |
| 599 | return -EINVAL; |
| 600 | |
| 601 | if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) |
| 602 | return 0; |
| 603 | |
| 604 | error = audit_signal_info(sig, t); /* Let audit system see the signal */ |
| 605 | if (error) |
| 606 | return error; |
| 607 | |
| 608 | tcred = __task_cred(t); |
| 609 | if ((cred->euid ^ tcred->suid) && |
| 610 | (cred->euid ^ tcred->uid) && |
| 611 | (cred->uid ^ tcred->suid) && |
| 612 | (cred->uid ^ tcred->uid) && |
| 613 | !capable(CAP_KILL)) { |
| 614 | switch (sig) { |
| 615 | case SIGCONT: |
| 616 | sid = task_session(t); |
| 617 | /* |
| 618 | * We don't return the error if sid == NULL. The |
| 619 | * task was unhashed, the caller must notice this. |
| 620 | */ |
| 621 | if (!sid || sid == task_session(current)) |
| 622 | break; |
| 623 | default: |
| 624 | return -EPERM; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | return security_task_kill(t, info, sig, 0); |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * Handle magic process-wide effects of stop/continue signals. Unlike |
| 633 | * the signal actions, these happen immediately at signal-generation |
| 634 | * time regardless of blocking, ignoring, or handling. This does the |
| 635 | * actual continuing for SIGCONT, but not the actual stopping for stop |
| 636 | * signals. The process stop is done as a signal action for SIG_DFL. |
| 637 | * |
| 638 | * Returns true if the signal should be actually delivered, otherwise |
| 639 | * it should be dropped. |
| 640 | */ |
| 641 | static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) |
| 642 | { |
| 643 | struct signal_struct *signal = p->signal; |
| 644 | struct task_struct *t; |
| 645 | |
| 646 | if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { |
| 647 | /* |
| 648 | * The process is in the middle of dying, nothing to do. |
| 649 | */ |
| 650 | } else if (sig_kernel_stop(sig)) { |
| 651 | /* |
| 652 | * This is a stop signal. Remove SIGCONT from all queues. |
| 653 | */ |
| 654 | rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); |
| 655 | t = p; |
| 656 | do { |
| 657 | rm_from_queue(sigmask(SIGCONT), &t->pending); |
| 658 | } while_each_thread(p, t); |
| 659 | } else if (sig == SIGCONT) { |
| 660 | unsigned int why; |
| 661 | /* |
| 662 | * Remove all stop signals from all queues, |
| 663 | * and wake all threads. |
| 664 | */ |
| 665 | rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); |
| 666 | t = p; |
| 667 | do { |
| 668 | unsigned int state; |
| 669 | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| 670 | /* |
| 671 | * If there is a handler for SIGCONT, we must make |
| 672 | * sure that no thread returns to user mode before |
| 673 | * we post the signal, in case it was the only |
| 674 | * thread eligible to run the signal handler--then |
| 675 | * it must not do anything between resuming and |
| 676 | * running the handler. With the TIF_SIGPENDING |
| 677 | * flag set, the thread will pause and acquire the |
| 678 | * siglock that we hold now and until we've queued |
| 679 | * the pending signal. |
| 680 | * |
| 681 | * Wake up the stopped thread _after_ setting |
| 682 | * TIF_SIGPENDING |
| 683 | */ |
| 684 | state = __TASK_STOPPED; |
| 685 | if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { |
| 686 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 687 | state |= TASK_INTERRUPTIBLE; |
| 688 | } |
| 689 | wake_up_state(t, state); |
| 690 | } while_each_thread(p, t); |
| 691 | |
| 692 | /* |
| 693 | * Notify the parent with CLD_CONTINUED if we were stopped. |
| 694 | * |
| 695 | * If we were in the middle of a group stop, we pretend it |
| 696 | * was already finished, and then continued. Since SIGCHLD |
| 697 | * doesn't queue we report only CLD_STOPPED, as if the next |
| 698 | * CLD_CONTINUED was dropped. |
| 699 | */ |
| 700 | why = 0; |
| 701 | if (signal->flags & SIGNAL_STOP_STOPPED) |
| 702 | why |= SIGNAL_CLD_CONTINUED; |
| 703 | else if (signal->group_stop_count) |
| 704 | why |= SIGNAL_CLD_STOPPED; |
| 705 | |
| 706 | if (why) { |
| 707 | /* |
| 708 | * The first thread which returns from do_signal_stop() |
| 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
| 710 | * notify its parent. See get_signal_to_deliver(). |
| 711 | */ |
| 712 | signal->flags = why | SIGNAL_STOP_CONTINUED; |
| 713 | signal->group_stop_count = 0; |
| 714 | signal->group_exit_code = 0; |
| 715 | } else { |
| 716 | /* |
| 717 | * We are not stopped, but there could be a stop |
| 718 | * signal in the middle of being processed after |
| 719 | * being removed from the queue. Clear that too. |
| 720 | */ |
| 721 | signal->flags &= ~SIGNAL_STOP_DEQUEUED; |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | return !sig_ignored(p, sig, from_ancestor_ns); |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Test if P wants to take SIG. After we've checked all threads with this, |
| 730 | * it's equivalent to finding no threads not blocking SIG. Any threads not |
| 731 | * blocking SIG were ruled out because they are not running and already |
| 732 | * have pending signals. Such threads will dequeue from the shared queue |
| 733 | * as soon as they're available, so putting the signal on the shared queue |
| 734 | * will be equivalent to sending it to one such thread. |
| 735 | */ |
| 736 | static inline int wants_signal(int sig, struct task_struct *p) |
| 737 | { |
| 738 | if (sigismember(&p->blocked, sig)) |
| 739 | return 0; |
| 740 | if (p->flags & PF_EXITING) |
| 741 | return 0; |
| 742 | if (sig == SIGKILL) |
| 743 | return 1; |
| 744 | if (task_is_stopped_or_traced(p)) |
| 745 | return 0; |
| 746 | return task_curr(p) || !signal_pending(p); |
| 747 | } |
| 748 | |
| 749 | static void complete_signal(int sig, struct task_struct *p, int group) |
| 750 | { |
| 751 | struct signal_struct *signal = p->signal; |
| 752 | struct task_struct *t; |
| 753 | |
| 754 | /* |
| 755 | * Now find a thread we can wake up to take the signal off the queue. |
| 756 | * |
| 757 | * If the main thread wants the signal, it gets first crack. |
| 758 | * Probably the least surprising to the average bear. |
| 759 | */ |
| 760 | if (wants_signal(sig, p)) |
| 761 | t = p; |
| 762 | else if (!group || thread_group_empty(p)) |
| 763 | /* |
| 764 | * There is just one thread and it does not need to be woken. |
| 765 | * It will dequeue unblocked signals before it runs again. |
| 766 | */ |
| 767 | return; |
| 768 | else { |
| 769 | /* |
| 770 | * Otherwise try to find a suitable thread. |
| 771 | */ |
| 772 | t = signal->curr_target; |
| 773 | while (!wants_signal(sig, t)) { |
| 774 | t = next_thread(t); |
| 775 | if (t == signal->curr_target) |
| 776 | /* |
| 777 | * No thread needs to be woken. |
| 778 | * Any eligible threads will see |
| 779 | * the signal in the queue soon. |
| 780 | */ |
| 781 | return; |
| 782 | } |
| 783 | signal->curr_target = t; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Found a killable thread. If the signal will be fatal, |
| 788 | * then start taking the whole group down immediately. |
| 789 | */ |
| 790 | if (sig_fatal(p, sig) && |
| 791 | !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && |
| 792 | !sigismember(&t->real_blocked, sig) && |
| 793 | (sig == SIGKILL || |
| 794 | !tracehook_consider_fatal_signal(t, sig))) { |
| 795 | /* |
| 796 | * This signal will be fatal to the whole group. |
| 797 | */ |
| 798 | if (!sig_kernel_coredump(sig)) { |
| 799 | /* |
| 800 | * Start a group exit and wake everybody up. |
| 801 | * This way we don't have other threads |
| 802 | * running and doing things after a slower |
| 803 | * thread has the fatal signal pending. |
| 804 | */ |
| 805 | signal->flags = SIGNAL_GROUP_EXIT; |
| 806 | signal->group_exit_code = sig; |
| 807 | signal->group_stop_count = 0; |
| 808 | t = p; |
| 809 | do { |
| 810 | sigaddset(&t->pending.signal, SIGKILL); |
| 811 | signal_wake_up(t, 1); |
| 812 | } while_each_thread(p, t); |
| 813 | return; |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * The signal is already in the shared-pending queue. |
| 819 | * Tell the chosen thread to wake up and dequeue it. |
| 820 | */ |
| 821 | signal_wake_up(t, sig == SIGKILL); |
| 822 | return; |
| 823 | } |
| 824 | |
| 825 | static inline int legacy_queue(struct sigpending *signals, int sig) |
| 826 | { |
| 827 | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); |
| 828 | } |
| 829 | |
| 830 | static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, |
| 831 | int group, int from_ancestor_ns) |
| 832 | { |
| 833 | struct sigpending *pending; |
| 834 | struct sigqueue *q; |
| 835 | int override_rlimit; |
| 836 | |
| 837 | trace_sched_signal_send(sig, t); |
| 838 | |
| 839 | assert_spin_locked(&t->sighand->siglock); |
| 840 | |
| 841 | if (!prepare_signal(sig, t, from_ancestor_ns)) |
| 842 | return 0; |
| 843 | |
| 844 | pending = group ? &t->signal->shared_pending : &t->pending; |
| 845 | /* |
| 846 | * Short-circuit ignored signals and support queuing |
| 847 | * exactly one non-rt signal, so that we can get more |
| 848 | * detailed information about the cause of the signal. |
| 849 | */ |
| 850 | if (legacy_queue(pending, sig)) |
| 851 | return 0; |
| 852 | /* |
| 853 | * fast-pathed signals for kernel-internal things like SIGSTOP |
| 854 | * or SIGKILL. |
| 855 | */ |
| 856 | if (info == SEND_SIG_FORCED) |
| 857 | goto out_set; |
| 858 | |
| 859 | /* Real-time signals must be queued if sent by sigqueue, or |
| 860 | some other real-time mechanism. It is implementation |
| 861 | defined whether kill() does so. We attempt to do so, on |
| 862 | the principle of least surprise, but since kill is not |
| 863 | allowed to fail with EAGAIN when low on memory we just |
| 864 | make sure at least one signal gets delivered and don't |
| 865 | pass on the info struct. */ |
| 866 | |
| 867 | if (sig < SIGRTMIN) |
| 868 | override_rlimit = (is_si_special(info) || info->si_code >= 0); |
| 869 | else |
| 870 | override_rlimit = 0; |
| 871 | |
| 872 | q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, |
| 873 | override_rlimit); |
| 874 | if (q) { |
| 875 | list_add_tail(&q->list, &pending->list); |
| 876 | switch ((unsigned long) info) { |
| 877 | case (unsigned long) SEND_SIG_NOINFO: |
| 878 | q->info.si_signo = sig; |
| 879 | q->info.si_errno = 0; |
| 880 | q->info.si_code = SI_USER; |
| 881 | q->info.si_pid = task_tgid_nr_ns(current, |
| 882 | task_active_pid_ns(t)); |
| 883 | q->info.si_uid = current_uid(); |
| 884 | break; |
| 885 | case (unsigned long) SEND_SIG_PRIV: |
| 886 | q->info.si_signo = sig; |
| 887 | q->info.si_errno = 0; |
| 888 | q->info.si_code = SI_KERNEL; |
| 889 | q->info.si_pid = 0; |
| 890 | q->info.si_uid = 0; |
| 891 | break; |
| 892 | default: |
| 893 | copy_siginfo(&q->info, info); |
| 894 | if (from_ancestor_ns) |
| 895 | q->info.si_pid = 0; |
| 896 | break; |
| 897 | } |
| 898 | } else if (!is_si_special(info)) { |
| 899 | if (sig >= SIGRTMIN && info->si_code != SI_USER) |
| 900 | /* |
| 901 | * Queue overflow, abort. We may abort if the signal was rt |
| 902 | * and sent by user using something other than kill(). |
| 903 | */ |
| 904 | return -EAGAIN; |
| 905 | } |
| 906 | |
| 907 | out_set: |
| 908 | signalfd_notify(t, sig); |
| 909 | sigaddset(&pending->signal, sig); |
| 910 | complete_signal(sig, t, group); |
| 911 | return 0; |
| 912 | } |
| 913 | |
| 914 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, |
| 915 | int group) |
| 916 | { |
| 917 | int from_ancestor_ns = 0; |
| 918 | |
| 919 | #ifdef CONFIG_PID_NS |
| 920 | if (!is_si_special(info) && SI_FROMUSER(info) && |
| 921 | task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) |
| 922 | from_ancestor_ns = 1; |
| 923 | #endif |
| 924 | |
| 925 | return __send_signal(sig, info, t, group, from_ancestor_ns); |
| 926 | } |
| 927 | |
| 928 | int print_fatal_signals; |
| 929 | |
| 930 | static void print_fatal_signal(struct pt_regs *regs, int signr) |
| 931 | { |
| 932 | printk("%s/%d: potentially unexpected fatal signal %d.\n", |
| 933 | current->comm, task_pid_nr(current), signr); |
| 934 | |
| 935 | #if defined(__i386__) && !defined(__arch_um__) |
| 936 | printk("code at %08lx: ", regs->ip); |
| 937 | { |
| 938 | int i; |
| 939 | for (i = 0; i < 16; i++) { |
| 940 | unsigned char insn; |
| 941 | |
| 942 | if (get_user(insn, (unsigned char *)(regs->ip + i))) |
| 943 | break; |
| 944 | printk("%02x ", insn); |
| 945 | } |
| 946 | } |
| 947 | #endif |
| 948 | printk("\n"); |
| 949 | preempt_disable(); |
| 950 | show_regs(regs); |
| 951 | preempt_enable(); |
| 952 | } |
| 953 | |
| 954 | static int __init setup_print_fatal_signals(char *str) |
| 955 | { |
| 956 | get_option (&str, &print_fatal_signals); |
| 957 | |
| 958 | return 1; |
| 959 | } |
| 960 | |
| 961 | __setup("print-fatal-signals=", setup_print_fatal_signals); |
| 962 | |
| 963 | int |
| 964 | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 965 | { |
| 966 | return send_signal(sig, info, p, 1); |
| 967 | } |
| 968 | |
| 969 | static int |
| 970 | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| 971 | { |
| 972 | return send_signal(sig, info, t, 0); |
| 973 | } |
| 974 | |
| 975 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, |
| 976 | bool group) |
| 977 | { |
| 978 | unsigned long flags; |
| 979 | int ret = -ESRCH; |
| 980 | |
| 981 | if (lock_task_sighand(p, &flags)) { |
| 982 | ret = send_signal(sig, info, p, group); |
| 983 | unlock_task_sighand(p, &flags); |
| 984 | } |
| 985 | |
| 986 | return ret; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Force a signal that the process can't ignore: if necessary |
| 991 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| 992 | * |
| 993 | * Note: If we unblock the signal, we always reset it to SIG_DFL, |
| 994 | * since we do not want to have a signal handler that was blocked |
| 995 | * be invoked when user space had explicitly blocked it. |
| 996 | * |
| 997 | * We don't want to have recursive SIGSEGV's etc, for example, |
| 998 | * that is why we also clear SIGNAL_UNKILLABLE. |
| 999 | */ |
| 1000 | int |
| 1001 | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| 1002 | { |
| 1003 | unsigned long int flags; |
| 1004 | int ret, blocked, ignored; |
| 1005 | struct k_sigaction *action; |
| 1006 | |
| 1007 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 1008 | action = &t->sighand->action[sig-1]; |
| 1009 | ignored = action->sa.sa_handler == SIG_IGN; |
| 1010 | blocked = sigismember(&t->blocked, sig); |
| 1011 | if (blocked || ignored) { |
| 1012 | action->sa.sa_handler = SIG_DFL; |
| 1013 | if (blocked) { |
| 1014 | sigdelset(&t->blocked, sig); |
| 1015 | recalc_sigpending_and_wake(t); |
| 1016 | } |
| 1017 | } |
| 1018 | if (action->sa.sa_handler == SIG_DFL) |
| 1019 | t->signal->flags &= ~SIGNAL_UNKILLABLE; |
| 1020 | ret = specific_send_sig_info(sig, info, t); |
| 1021 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| 1022 | |
| 1023 | return ret; |
| 1024 | } |
| 1025 | |
| 1026 | void |
| 1027 | force_sig_specific(int sig, struct task_struct *t) |
| 1028 | { |
| 1029 | force_sig_info(sig, SEND_SIG_FORCED, t); |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Nuke all other threads in the group. |
| 1034 | */ |
| 1035 | void zap_other_threads(struct task_struct *p) |
| 1036 | { |
| 1037 | struct task_struct *t; |
| 1038 | |
| 1039 | p->signal->group_stop_count = 0; |
| 1040 | |
| 1041 | for (t = next_thread(p); t != p; t = next_thread(t)) { |
| 1042 | /* |
| 1043 | * Don't bother with already dead threads |
| 1044 | */ |
| 1045 | if (t->exit_state) |
| 1046 | continue; |
| 1047 | |
| 1048 | /* SIGKILL will be handled before any pending SIGSTOP */ |
| 1049 | sigaddset(&t->pending.signal, SIGKILL); |
| 1050 | signal_wake_up(t, 1); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
| 1055 | { |
| 1056 | struct sighand_struct *sighand; |
| 1057 | |
| 1058 | rcu_read_lock(); |
| 1059 | for (;;) { |
| 1060 | sighand = rcu_dereference(tsk->sighand); |
| 1061 | if (unlikely(sighand == NULL)) |
| 1062 | break; |
| 1063 | |
| 1064 | spin_lock_irqsave(&sighand->siglock, *flags); |
| 1065 | if (likely(sighand == tsk->sighand)) |
| 1066 | break; |
| 1067 | spin_unlock_irqrestore(&sighand->siglock, *flags); |
| 1068 | } |
| 1069 | rcu_read_unlock(); |
| 1070 | |
| 1071 | return sighand; |
| 1072 | } |
| 1073 | EXPORT_SYMBOL(lock_task_sighand); |
| 1074 | |
| 1075 | /* |
| 1076 | * send signal info to all the members of a group |
| 1077 | * - the caller must hold the RCU read lock at least |
| 1078 | */ |
| 1079 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1080 | { |
| 1081 | int ret = check_kill_permission(sig, info, p); |
| 1082 | |
| 1083 | if (!ret && sig) |
| 1084 | ret = do_send_sig_info(sig, info, p, true); |
| 1085 | |
| 1086 | return ret; |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | * __kill_pgrp_info() sends a signal to a process group: this is what the tty |
| 1091 | * control characters do (^C, ^Z etc) |
| 1092 | * - the caller must hold at least a readlock on tasklist_lock |
| 1093 | */ |
| 1094 | int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) |
| 1095 | { |
| 1096 | struct task_struct *p = NULL; |
| 1097 | int retval, success; |
| 1098 | |
| 1099 | success = 0; |
| 1100 | retval = -ESRCH; |
| 1101 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
| 1102 | int err = group_send_sig_info(sig, info, p); |
| 1103 | success |= !err; |
| 1104 | retval = err; |
| 1105 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
| 1106 | return success ? 0 : retval; |
| 1107 | } |
| 1108 | |
| 1109 | int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) |
| 1110 | { |
| 1111 | int error = -ESRCH; |
| 1112 | struct task_struct *p; |
| 1113 | |
| 1114 | rcu_read_lock(); |
| 1115 | retry: |
| 1116 | p = pid_task(pid, PIDTYPE_PID); |
| 1117 | if (p) { |
| 1118 | error = group_send_sig_info(sig, info, p); |
| 1119 | if (unlikely(error == -ESRCH)) |
| 1120 | /* |
| 1121 | * The task was unhashed in between, try again. |
| 1122 | * If it is dead, pid_task() will return NULL, |
| 1123 | * if we race with de_thread() it will find the |
| 1124 | * new leader. |
| 1125 | */ |
| 1126 | goto retry; |
| 1127 | } |
| 1128 | rcu_read_unlock(); |
| 1129 | |
| 1130 | return error; |
| 1131 | } |
| 1132 | |
| 1133 | int |
| 1134 | kill_proc_info(int sig, struct siginfo *info, pid_t pid) |
| 1135 | { |
| 1136 | int error; |
| 1137 | rcu_read_lock(); |
| 1138 | error = kill_pid_info(sig, info, find_vpid(pid)); |
| 1139 | rcu_read_unlock(); |
| 1140 | return error; |
| 1141 | } |
| 1142 | |
| 1143 | /* like kill_pid_info(), but doesn't use uid/euid of "current" */ |
| 1144 | int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, |
| 1145 | uid_t uid, uid_t euid, u32 secid) |
| 1146 | { |
| 1147 | int ret = -EINVAL; |
| 1148 | struct task_struct *p; |
| 1149 | const struct cred *pcred; |
| 1150 | |
| 1151 | if (!valid_signal(sig)) |
| 1152 | return ret; |
| 1153 | |
| 1154 | read_lock(&tasklist_lock); |
| 1155 | p = pid_task(pid, PIDTYPE_PID); |
| 1156 | if (!p) { |
| 1157 | ret = -ESRCH; |
| 1158 | goto out_unlock; |
| 1159 | } |
| 1160 | pcred = __task_cred(p); |
| 1161 | if ((info == SEND_SIG_NOINFO || |
| 1162 | (!is_si_special(info) && SI_FROMUSER(info))) && |
| 1163 | euid != pcred->suid && euid != pcred->uid && |
| 1164 | uid != pcred->suid && uid != pcred->uid) { |
| 1165 | ret = -EPERM; |
| 1166 | goto out_unlock; |
| 1167 | } |
| 1168 | ret = security_task_kill(p, info, sig, secid); |
| 1169 | if (ret) |
| 1170 | goto out_unlock; |
| 1171 | if (sig && p->sighand) { |
| 1172 | unsigned long flags; |
| 1173 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1174 | ret = __send_signal(sig, info, p, 1, 0); |
| 1175 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1176 | } |
| 1177 | out_unlock: |
| 1178 | read_unlock(&tasklist_lock); |
| 1179 | return ret; |
| 1180 | } |
| 1181 | EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); |
| 1182 | |
| 1183 | /* |
| 1184 | * kill_something_info() interprets pid in interesting ways just like kill(2). |
| 1185 | * |
| 1186 | * POSIX specifies that kill(-1,sig) is unspecified, but what we have |
| 1187 | * is probably wrong. Should make it like BSD or SYSV. |
| 1188 | */ |
| 1189 | |
| 1190 | static int kill_something_info(int sig, struct siginfo *info, pid_t pid) |
| 1191 | { |
| 1192 | int ret; |
| 1193 | |
| 1194 | if (pid > 0) { |
| 1195 | rcu_read_lock(); |
| 1196 | ret = kill_pid_info(sig, info, find_vpid(pid)); |
| 1197 | rcu_read_unlock(); |
| 1198 | return ret; |
| 1199 | } |
| 1200 | |
| 1201 | read_lock(&tasklist_lock); |
| 1202 | if (pid != -1) { |
| 1203 | ret = __kill_pgrp_info(sig, info, |
| 1204 | pid ? find_vpid(-pid) : task_pgrp(current)); |
| 1205 | } else { |
| 1206 | int retval = 0, count = 0; |
| 1207 | struct task_struct * p; |
| 1208 | |
| 1209 | for_each_process(p) { |
| 1210 | if (task_pid_vnr(p) > 1 && |
| 1211 | !same_thread_group(p, current)) { |
| 1212 | int err = group_send_sig_info(sig, info, p); |
| 1213 | ++count; |
| 1214 | if (err != -EPERM) |
| 1215 | retval = err; |
| 1216 | } |
| 1217 | } |
| 1218 | ret = count ? retval : -ESRCH; |
| 1219 | } |
| 1220 | read_unlock(&tasklist_lock); |
| 1221 | |
| 1222 | return ret; |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * These are for backward compatibility with the rest of the kernel source. |
| 1227 | */ |
| 1228 | |
| 1229 | int |
| 1230 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1231 | { |
| 1232 | /* |
| 1233 | * Make sure legacy kernel users don't send in bad values |
| 1234 | * (normal paths check this in check_kill_permission). |
| 1235 | */ |
| 1236 | if (!valid_signal(sig)) |
| 1237 | return -EINVAL; |
| 1238 | |
| 1239 | return do_send_sig_info(sig, info, p, false); |
| 1240 | } |
| 1241 | |
| 1242 | #define __si_special(priv) \ |
| 1243 | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) |
| 1244 | |
| 1245 | int |
| 1246 | send_sig(int sig, struct task_struct *p, int priv) |
| 1247 | { |
| 1248 | return send_sig_info(sig, __si_special(priv), p); |
| 1249 | } |
| 1250 | |
| 1251 | void |
| 1252 | force_sig(int sig, struct task_struct *p) |
| 1253 | { |
| 1254 | force_sig_info(sig, SEND_SIG_PRIV, p); |
| 1255 | } |
| 1256 | |
| 1257 | /* |
| 1258 | * When things go south during signal handling, we |
| 1259 | * will force a SIGSEGV. And if the signal that caused |
| 1260 | * the problem was already a SIGSEGV, we'll want to |
| 1261 | * make sure we don't even try to deliver the signal.. |
| 1262 | */ |
| 1263 | int |
| 1264 | force_sigsegv(int sig, struct task_struct *p) |
| 1265 | { |
| 1266 | if (sig == SIGSEGV) { |
| 1267 | unsigned long flags; |
| 1268 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1269 | p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; |
| 1270 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1271 | } |
| 1272 | force_sig(SIGSEGV, p); |
| 1273 | return 0; |
| 1274 | } |
| 1275 | |
| 1276 | int kill_pgrp(struct pid *pid, int sig, int priv) |
| 1277 | { |
| 1278 | int ret; |
| 1279 | |
| 1280 | read_lock(&tasklist_lock); |
| 1281 | ret = __kill_pgrp_info(sig, __si_special(priv), pid); |
| 1282 | read_unlock(&tasklist_lock); |
| 1283 | |
| 1284 | return ret; |
| 1285 | } |
| 1286 | EXPORT_SYMBOL(kill_pgrp); |
| 1287 | |
| 1288 | int kill_pid(struct pid *pid, int sig, int priv) |
| 1289 | { |
| 1290 | return kill_pid_info(sig, __si_special(priv), pid); |
| 1291 | } |
| 1292 | EXPORT_SYMBOL(kill_pid); |
| 1293 | |
| 1294 | /* |
| 1295 | * These functions support sending signals using preallocated sigqueue |
| 1296 | * structures. This is needed "because realtime applications cannot |
| 1297 | * afford to lose notifications of asynchronous events, like timer |
| 1298 | * expirations or I/O completions". In the case of Posix Timers |
| 1299 | * we allocate the sigqueue structure from the timer_create. If this |
| 1300 | * allocation fails we are able to report the failure to the application |
| 1301 | * with an EAGAIN error. |
| 1302 | */ |
| 1303 | |
| 1304 | struct sigqueue *sigqueue_alloc(void) |
| 1305 | { |
| 1306 | struct sigqueue *q; |
| 1307 | |
| 1308 | if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) |
| 1309 | q->flags |= SIGQUEUE_PREALLOC; |
| 1310 | return(q); |
| 1311 | } |
| 1312 | |
| 1313 | void sigqueue_free(struct sigqueue *q) |
| 1314 | { |
| 1315 | unsigned long flags; |
| 1316 | spinlock_t *lock = ¤t->sighand->siglock; |
| 1317 | |
| 1318 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| 1319 | /* |
| 1320 | * We must hold ->siglock while testing q->list |
| 1321 | * to serialize with collect_signal() or with |
| 1322 | * __exit_signal()->flush_sigqueue(). |
| 1323 | */ |
| 1324 | spin_lock_irqsave(lock, flags); |
| 1325 | q->flags &= ~SIGQUEUE_PREALLOC; |
| 1326 | /* |
| 1327 | * If it is queued it will be freed when dequeued, |
| 1328 | * like the "regular" sigqueue. |
| 1329 | */ |
| 1330 | if (!list_empty(&q->list)) |
| 1331 | q = NULL; |
| 1332 | spin_unlock_irqrestore(lock, flags); |
| 1333 | |
| 1334 | if (q) |
| 1335 | __sigqueue_free(q); |
| 1336 | } |
| 1337 | |
| 1338 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) |
| 1339 | { |
| 1340 | int sig = q->info.si_signo; |
| 1341 | struct sigpending *pending; |
| 1342 | unsigned long flags; |
| 1343 | int ret; |
| 1344 | |
| 1345 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| 1346 | |
| 1347 | ret = -1; |
| 1348 | if (!likely(lock_task_sighand(t, &flags))) |
| 1349 | goto ret; |
| 1350 | |
| 1351 | ret = 1; /* the signal is ignored */ |
| 1352 | if (!prepare_signal(sig, t, 0)) |
| 1353 | goto out; |
| 1354 | |
| 1355 | ret = 0; |
| 1356 | if (unlikely(!list_empty(&q->list))) { |
| 1357 | /* |
| 1358 | * If an SI_TIMER entry is already queue just increment |
| 1359 | * the overrun count. |
| 1360 | */ |
| 1361 | BUG_ON(q->info.si_code != SI_TIMER); |
| 1362 | q->info.si_overrun++; |
| 1363 | goto out; |
| 1364 | } |
| 1365 | q->info.si_overrun = 0; |
| 1366 | |
| 1367 | signalfd_notify(t, sig); |
| 1368 | pending = group ? &t->signal->shared_pending : &t->pending; |
| 1369 | list_add_tail(&q->list, &pending->list); |
| 1370 | sigaddset(&pending->signal, sig); |
| 1371 | complete_signal(sig, t, group); |
| 1372 | out: |
| 1373 | unlock_task_sighand(t, &flags); |
| 1374 | ret: |
| 1375 | return ret; |
| 1376 | } |
| 1377 | |
| 1378 | /* |
| 1379 | * Let a parent know about the death of a child. |
| 1380 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| 1381 | * |
| 1382 | * Returns -1 if our parent ignored us and so we've switched to |
| 1383 | * self-reaping, or else @sig. |
| 1384 | */ |
| 1385 | int do_notify_parent(struct task_struct *tsk, int sig) |
| 1386 | { |
| 1387 | struct siginfo info; |
| 1388 | unsigned long flags; |
| 1389 | struct sighand_struct *psig; |
| 1390 | int ret = sig; |
| 1391 | |
| 1392 | BUG_ON(sig == -1); |
| 1393 | |
| 1394 | /* do_notify_parent_cldstop should have been called instead. */ |
| 1395 | BUG_ON(task_is_stopped_or_traced(tsk)); |
| 1396 | |
| 1397 | BUG_ON(!task_ptrace(tsk) && |
| 1398 | (tsk->group_leader != tsk || !thread_group_empty(tsk))); |
| 1399 | |
| 1400 | info.si_signo = sig; |
| 1401 | info.si_errno = 0; |
| 1402 | /* |
| 1403 | * we are under tasklist_lock here so our parent is tied to |
| 1404 | * us and cannot exit and release its namespace. |
| 1405 | * |
| 1406 | * the only it can is to switch its nsproxy with sys_unshare, |
| 1407 | * bu uncharing pid namespaces is not allowed, so we'll always |
| 1408 | * see relevant namespace |
| 1409 | * |
| 1410 | * write_lock() currently calls preempt_disable() which is the |
| 1411 | * same as rcu_read_lock(), but according to Oleg, this is not |
| 1412 | * correct to rely on this |
| 1413 | */ |
| 1414 | rcu_read_lock(); |
| 1415 | info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); |
| 1416 | info.si_uid = __task_cred(tsk)->uid; |
| 1417 | rcu_read_unlock(); |
| 1418 | |
| 1419 | info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, |
| 1420 | tsk->signal->utime)); |
| 1421 | info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, |
| 1422 | tsk->signal->stime)); |
| 1423 | |
| 1424 | info.si_status = tsk->exit_code & 0x7f; |
| 1425 | if (tsk->exit_code & 0x80) |
| 1426 | info.si_code = CLD_DUMPED; |
| 1427 | else if (tsk->exit_code & 0x7f) |
| 1428 | info.si_code = CLD_KILLED; |
| 1429 | else { |
| 1430 | info.si_code = CLD_EXITED; |
| 1431 | info.si_status = tsk->exit_code >> 8; |
| 1432 | } |
| 1433 | |
| 1434 | psig = tsk->parent->sighand; |
| 1435 | spin_lock_irqsave(&psig->siglock, flags); |
| 1436 | if (!task_ptrace(tsk) && sig == SIGCHLD && |
| 1437 | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || |
| 1438 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { |
| 1439 | /* |
| 1440 | * We are exiting and our parent doesn't care. POSIX.1 |
| 1441 | * defines special semantics for setting SIGCHLD to SIG_IGN |
| 1442 | * or setting the SA_NOCLDWAIT flag: we should be reaped |
| 1443 | * automatically and not left for our parent's wait4 call. |
| 1444 | * Rather than having the parent do it as a magic kind of |
| 1445 | * signal handler, we just set this to tell do_exit that we |
| 1446 | * can be cleaned up without becoming a zombie. Note that |
| 1447 | * we still call __wake_up_parent in this case, because a |
| 1448 | * blocked sys_wait4 might now return -ECHILD. |
| 1449 | * |
| 1450 | * Whether we send SIGCHLD or not for SA_NOCLDWAIT |
| 1451 | * is implementation-defined: we do (if you don't want |
| 1452 | * it, just use SIG_IGN instead). |
| 1453 | */ |
| 1454 | ret = tsk->exit_signal = -1; |
| 1455 | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) |
| 1456 | sig = -1; |
| 1457 | } |
| 1458 | if (valid_signal(sig) && sig > 0) |
| 1459 | __group_send_sig_info(sig, &info, tsk->parent); |
| 1460 | __wake_up_parent(tsk, tsk->parent); |
| 1461 | spin_unlock_irqrestore(&psig->siglock, flags); |
| 1462 | |
| 1463 | return ret; |
| 1464 | } |
| 1465 | |
| 1466 | static void do_notify_parent_cldstop(struct task_struct *tsk, int why) |
| 1467 | { |
| 1468 | struct siginfo info; |
| 1469 | unsigned long flags; |
| 1470 | struct task_struct *parent; |
| 1471 | struct sighand_struct *sighand; |
| 1472 | |
| 1473 | if (task_ptrace(tsk)) |
| 1474 | parent = tsk->parent; |
| 1475 | else { |
| 1476 | tsk = tsk->group_leader; |
| 1477 | parent = tsk->real_parent; |
| 1478 | } |
| 1479 | |
| 1480 | info.si_signo = SIGCHLD; |
| 1481 | info.si_errno = 0; |
| 1482 | /* |
| 1483 | * see comment in do_notify_parent() abot the following 3 lines |
| 1484 | */ |
| 1485 | rcu_read_lock(); |
| 1486 | info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); |
| 1487 | info.si_uid = __task_cred(tsk)->uid; |
| 1488 | rcu_read_unlock(); |
| 1489 | |
| 1490 | info.si_utime = cputime_to_clock_t(tsk->utime); |
| 1491 | info.si_stime = cputime_to_clock_t(tsk->stime); |
| 1492 | |
| 1493 | info.si_code = why; |
| 1494 | switch (why) { |
| 1495 | case CLD_CONTINUED: |
| 1496 | info.si_status = SIGCONT; |
| 1497 | break; |
| 1498 | case CLD_STOPPED: |
| 1499 | info.si_status = tsk->signal->group_exit_code & 0x7f; |
| 1500 | break; |
| 1501 | case CLD_TRAPPED: |
| 1502 | info.si_status = tsk->exit_code & 0x7f; |
| 1503 | break; |
| 1504 | default: |
| 1505 | BUG(); |
| 1506 | } |
| 1507 | |
| 1508 | sighand = parent->sighand; |
| 1509 | spin_lock_irqsave(&sighand->siglock, flags); |
| 1510 | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && |
| 1511 | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) |
| 1512 | __group_send_sig_info(SIGCHLD, &info, parent); |
| 1513 | /* |
| 1514 | * Even if SIGCHLD is not generated, we must wake up wait4 calls. |
| 1515 | */ |
| 1516 | __wake_up_parent(tsk, parent); |
| 1517 | spin_unlock_irqrestore(&sighand->siglock, flags); |
| 1518 | } |
| 1519 | |
| 1520 | static inline int may_ptrace_stop(void) |
| 1521 | { |
| 1522 | if (!likely(task_ptrace(current))) |
| 1523 | return 0; |
| 1524 | /* |
| 1525 | * Are we in the middle of do_coredump? |
| 1526 | * If so and our tracer is also part of the coredump stopping |
| 1527 | * is a deadlock situation, and pointless because our tracer |
| 1528 | * is dead so don't allow us to stop. |
| 1529 | * If SIGKILL was already sent before the caller unlocked |
| 1530 | * ->siglock we must see ->core_state != NULL. Otherwise it |
| 1531 | * is safe to enter schedule(). |
| 1532 | */ |
| 1533 | if (unlikely(current->mm->core_state) && |
| 1534 | unlikely(current->mm == current->parent->mm)) |
| 1535 | return 0; |
| 1536 | |
| 1537 | return 1; |
| 1538 | } |
| 1539 | |
| 1540 | /* |
| 1541 | * Return nonzero if there is a SIGKILL that should be waking us up. |
| 1542 | * Called with the siglock held. |
| 1543 | */ |
| 1544 | static int sigkill_pending(struct task_struct *tsk) |
| 1545 | { |
| 1546 | return sigismember(&tsk->pending.signal, SIGKILL) || |
| 1547 | sigismember(&tsk->signal->shared_pending.signal, SIGKILL); |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * This must be called with current->sighand->siglock held. |
| 1552 | * |
| 1553 | * This should be the path for all ptrace stops. |
| 1554 | * We always set current->last_siginfo while stopped here. |
| 1555 | * That makes it a way to test a stopped process for |
| 1556 | * being ptrace-stopped vs being job-control-stopped. |
| 1557 | * |
| 1558 | * If we actually decide not to stop at all because the tracer |
| 1559 | * is gone, we keep current->exit_code unless clear_code. |
| 1560 | */ |
| 1561 | static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) |
| 1562 | { |
| 1563 | if (arch_ptrace_stop_needed(exit_code, info)) { |
| 1564 | /* |
| 1565 | * The arch code has something special to do before a |
| 1566 | * ptrace stop. This is allowed to block, e.g. for faults |
| 1567 | * on user stack pages. We can't keep the siglock while |
| 1568 | * calling arch_ptrace_stop, so we must release it now. |
| 1569 | * To preserve proper semantics, we must do this before |
| 1570 | * any signal bookkeeping like checking group_stop_count. |
| 1571 | * Meanwhile, a SIGKILL could come in before we retake the |
| 1572 | * siglock. That must prevent us from sleeping in TASK_TRACED. |
| 1573 | * So after regaining the lock, we must check for SIGKILL. |
| 1574 | */ |
| 1575 | spin_unlock_irq(¤t->sighand->siglock); |
| 1576 | arch_ptrace_stop(exit_code, info); |
| 1577 | spin_lock_irq(¤t->sighand->siglock); |
| 1578 | if (sigkill_pending(current)) |
| 1579 | return; |
| 1580 | } |
| 1581 | |
| 1582 | /* |
| 1583 | * If there is a group stop in progress, |
| 1584 | * we must participate in the bookkeeping. |
| 1585 | */ |
| 1586 | if (current->signal->group_stop_count > 0) |
| 1587 | --current->signal->group_stop_count; |
| 1588 | |
| 1589 | current->last_siginfo = info; |
| 1590 | current->exit_code = exit_code; |
| 1591 | |
| 1592 | /* Let the debugger run. */ |
| 1593 | __set_current_state(TASK_TRACED); |
| 1594 | spin_unlock_irq(¤t->sighand->siglock); |
| 1595 | read_lock(&tasklist_lock); |
| 1596 | if (may_ptrace_stop()) { |
| 1597 | do_notify_parent_cldstop(current, CLD_TRAPPED); |
| 1598 | /* |
| 1599 | * Don't want to allow preemption here, because |
| 1600 | * sys_ptrace() needs this task to be inactive. |
| 1601 | * |
| 1602 | * XXX: implement read_unlock_no_resched(). |
| 1603 | */ |
| 1604 | preempt_disable(); |
| 1605 | read_unlock(&tasklist_lock); |
| 1606 | preempt_enable_no_resched(); |
| 1607 | schedule(); |
| 1608 | } else { |
| 1609 | /* |
| 1610 | * By the time we got the lock, our tracer went away. |
| 1611 | * Don't drop the lock yet, another tracer may come. |
| 1612 | */ |
| 1613 | __set_current_state(TASK_RUNNING); |
| 1614 | if (clear_code) |
| 1615 | current->exit_code = 0; |
| 1616 | read_unlock(&tasklist_lock); |
| 1617 | } |
| 1618 | |
| 1619 | /* |
| 1620 | * While in TASK_TRACED, we were considered "frozen enough". |
| 1621 | * Now that we woke up, it's crucial if we're supposed to be |
| 1622 | * frozen that we freeze now before running anything substantial. |
| 1623 | */ |
| 1624 | try_to_freeze(); |
| 1625 | |
| 1626 | /* |
| 1627 | * We are back. Now reacquire the siglock before touching |
| 1628 | * last_siginfo, so that we are sure to have synchronized with |
| 1629 | * any signal-sending on another CPU that wants to examine it. |
| 1630 | */ |
| 1631 | spin_lock_irq(¤t->sighand->siglock); |
| 1632 | current->last_siginfo = NULL; |
| 1633 | |
| 1634 | /* |
| 1635 | * Queued signals ignored us while we were stopped for tracing. |
| 1636 | * So check for any that we should take before resuming user mode. |
| 1637 | * This sets TIF_SIGPENDING, but never clears it. |
| 1638 | */ |
| 1639 | recalc_sigpending_tsk(current); |
| 1640 | } |
| 1641 | |
| 1642 | void ptrace_notify(int exit_code) |
| 1643 | { |
| 1644 | siginfo_t info; |
| 1645 | |
| 1646 | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); |
| 1647 | |
| 1648 | memset(&info, 0, sizeof info); |
| 1649 | info.si_signo = SIGTRAP; |
| 1650 | info.si_code = exit_code; |
| 1651 | info.si_pid = task_pid_vnr(current); |
| 1652 | info.si_uid = current_uid(); |
| 1653 | |
| 1654 | /* Let the debugger run. */ |
| 1655 | spin_lock_irq(¤t->sighand->siglock); |
| 1656 | ptrace_stop(exit_code, 1, &info); |
| 1657 | spin_unlock_irq(¤t->sighand->siglock); |
| 1658 | } |
| 1659 | |
| 1660 | /* |
| 1661 | * This performs the stopping for SIGSTOP and other stop signals. |
| 1662 | * We have to stop all threads in the thread group. |
| 1663 | * Returns nonzero if we've actually stopped and released the siglock. |
| 1664 | * Returns zero if we didn't stop and still hold the siglock. |
| 1665 | */ |
| 1666 | static int do_signal_stop(int signr) |
| 1667 | { |
| 1668 | struct signal_struct *sig = current->signal; |
| 1669 | int notify; |
| 1670 | |
| 1671 | if (!sig->group_stop_count) { |
| 1672 | struct task_struct *t; |
| 1673 | |
| 1674 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
| 1675 | unlikely(signal_group_exit(sig))) |
| 1676 | return 0; |
| 1677 | /* |
| 1678 | * There is no group stop already in progress. |
| 1679 | * We must initiate one now. |
| 1680 | */ |
| 1681 | sig->group_exit_code = signr; |
| 1682 | |
| 1683 | sig->group_stop_count = 1; |
| 1684 | for (t = next_thread(current); t != current; t = next_thread(t)) |
| 1685 | /* |
| 1686 | * Setting state to TASK_STOPPED for a group |
| 1687 | * stop is always done with the siglock held, |
| 1688 | * so this check has no races. |
| 1689 | */ |
| 1690 | if (!(t->flags & PF_EXITING) && |
| 1691 | !task_is_stopped_or_traced(t)) { |
| 1692 | sig->group_stop_count++; |
| 1693 | signal_wake_up(t, 0); |
| 1694 | } |
| 1695 | } |
| 1696 | /* |
| 1697 | * If there are no other threads in the group, or if there is |
| 1698 | * a group stop in progress and we are the last to stop, report |
| 1699 | * to the parent. When ptraced, every thread reports itself. |
| 1700 | */ |
| 1701 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; |
| 1702 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); |
| 1703 | /* |
| 1704 | * tracehook_notify_jctl() can drop and reacquire siglock, so |
| 1705 | * we keep ->group_stop_count != 0 before the call. If SIGCONT |
| 1706 | * or SIGKILL comes in between ->group_stop_count == 0. |
| 1707 | */ |
| 1708 | if (sig->group_stop_count) { |
| 1709 | if (!--sig->group_stop_count) |
| 1710 | sig->flags = SIGNAL_STOP_STOPPED; |
| 1711 | current->exit_code = sig->group_exit_code; |
| 1712 | __set_current_state(TASK_STOPPED); |
| 1713 | } |
| 1714 | spin_unlock_irq(¤t->sighand->siglock); |
| 1715 | |
| 1716 | if (notify) { |
| 1717 | read_lock(&tasklist_lock); |
| 1718 | do_notify_parent_cldstop(current, notify); |
| 1719 | read_unlock(&tasklist_lock); |
| 1720 | } |
| 1721 | |
| 1722 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ |
| 1723 | do { |
| 1724 | schedule(); |
| 1725 | } while (try_to_freeze()); |
| 1726 | |
| 1727 | tracehook_finish_jctl(); |
| 1728 | current->exit_code = 0; |
| 1729 | |
| 1730 | return 1; |
| 1731 | } |
| 1732 | |
| 1733 | static int ptrace_signal(int signr, siginfo_t *info, |
| 1734 | struct pt_regs *regs, void *cookie) |
| 1735 | { |
| 1736 | if (!task_ptrace(current)) |
| 1737 | return signr; |
| 1738 | |
| 1739 | ptrace_signal_deliver(regs, cookie); |
| 1740 | |
| 1741 | /* Let the debugger run. */ |
| 1742 | ptrace_stop(signr, 0, info); |
| 1743 | |
| 1744 | /* We're back. Did the debugger cancel the sig? */ |
| 1745 | signr = current->exit_code; |
| 1746 | if (signr == 0) |
| 1747 | return signr; |
| 1748 | |
| 1749 | current->exit_code = 0; |
| 1750 | |
| 1751 | /* Update the siginfo structure if the signal has |
| 1752 | changed. If the debugger wanted something |
| 1753 | specific in the siginfo structure then it should |
| 1754 | have updated *info via PTRACE_SETSIGINFO. */ |
| 1755 | if (signr != info->si_signo) { |
| 1756 | info->si_signo = signr; |
| 1757 | info->si_errno = 0; |
| 1758 | info->si_code = SI_USER; |
| 1759 | info->si_pid = task_pid_vnr(current->parent); |
| 1760 | info->si_uid = task_uid(current->parent); |
| 1761 | } |
| 1762 | |
| 1763 | /* If the (new) signal is now blocked, requeue it. */ |
| 1764 | if (sigismember(¤t->blocked, signr)) { |
| 1765 | specific_send_sig_info(signr, info, current); |
| 1766 | signr = 0; |
| 1767 | } |
| 1768 | |
| 1769 | return signr; |
| 1770 | } |
| 1771 | |
| 1772 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, |
| 1773 | struct pt_regs *regs, void *cookie) |
| 1774 | { |
| 1775 | struct sighand_struct *sighand = current->sighand; |
| 1776 | struct signal_struct *signal = current->signal; |
| 1777 | int signr; |
| 1778 | |
| 1779 | relock: |
| 1780 | /* |
| 1781 | * We'll jump back here after any time we were stopped in TASK_STOPPED. |
| 1782 | * While in TASK_STOPPED, we were considered "frozen enough". |
| 1783 | * Now that we woke up, it's crucial if we're supposed to be |
| 1784 | * frozen that we freeze now before running anything substantial. |
| 1785 | */ |
| 1786 | try_to_freeze(); |
| 1787 | |
| 1788 | spin_lock_irq(&sighand->siglock); |
| 1789 | /* |
| 1790 | * Every stopped thread goes here after wakeup. Check to see if |
| 1791 | * we should notify the parent, prepare_signal(SIGCONT) encodes |
| 1792 | * the CLD_ si_code into SIGNAL_CLD_MASK bits. |
| 1793 | */ |
| 1794 | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { |
| 1795 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
| 1796 | ? CLD_CONTINUED : CLD_STOPPED; |
| 1797 | signal->flags &= ~SIGNAL_CLD_MASK; |
| 1798 | |
| 1799 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
| 1800 | spin_unlock_irq(&sighand->siglock); |
| 1801 | |
| 1802 | if (why) { |
| 1803 | read_lock(&tasklist_lock); |
| 1804 | do_notify_parent_cldstop(current->group_leader, why); |
| 1805 | read_unlock(&tasklist_lock); |
| 1806 | } |
| 1807 | goto relock; |
| 1808 | } |
| 1809 | |
| 1810 | for (;;) { |
| 1811 | struct k_sigaction *ka; |
| 1812 | |
| 1813 | if (unlikely(signal->group_stop_count > 0) && |
| 1814 | do_signal_stop(0)) |
| 1815 | goto relock; |
| 1816 | |
| 1817 | /* |
| 1818 | * Tracing can induce an artifical signal and choose sigaction. |
| 1819 | * The return value in @signr determines the default action, |
| 1820 | * but @info->si_signo is the signal number we will report. |
| 1821 | */ |
| 1822 | signr = tracehook_get_signal(current, regs, info, return_ka); |
| 1823 | if (unlikely(signr < 0)) |
| 1824 | goto relock; |
| 1825 | if (unlikely(signr != 0)) |
| 1826 | ka = return_ka; |
| 1827 | else { |
| 1828 | signr = dequeue_signal(current, ¤t->blocked, |
| 1829 | info); |
| 1830 | |
| 1831 | if (!signr) |
| 1832 | break; /* will return 0 */ |
| 1833 | |
| 1834 | if (signr != SIGKILL) { |
| 1835 | signr = ptrace_signal(signr, info, |
| 1836 | regs, cookie); |
| 1837 | if (!signr) |
| 1838 | continue; |
| 1839 | } |
| 1840 | |
| 1841 | ka = &sighand->action[signr-1]; |
| 1842 | } |
| 1843 | |
| 1844 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
| 1845 | continue; |
| 1846 | if (ka->sa.sa_handler != SIG_DFL) { |
| 1847 | /* Run the handler. */ |
| 1848 | *return_ka = *ka; |
| 1849 | |
| 1850 | if (ka->sa.sa_flags & SA_ONESHOT) |
| 1851 | ka->sa.sa_handler = SIG_DFL; |
| 1852 | |
| 1853 | break; /* will return non-zero "signr" value */ |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * Now we are doing the default action for this signal. |
| 1858 | */ |
| 1859 | if (sig_kernel_ignore(signr)) /* Default is nothing. */ |
| 1860 | continue; |
| 1861 | |
| 1862 | /* |
| 1863 | * Global init gets no signals it doesn't want. |
| 1864 | * Container-init gets no signals it doesn't want from same |
| 1865 | * container. |
| 1866 | * |
| 1867 | * Note that if global/container-init sees a sig_kernel_only() |
| 1868 | * signal here, the signal must have been generated internally |
| 1869 | * or must have come from an ancestor namespace. In either |
| 1870 | * case, the signal cannot be dropped. |
| 1871 | */ |
| 1872 | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && |
| 1873 | !sig_kernel_only(signr)) |
| 1874 | continue; |
| 1875 | |
| 1876 | if (sig_kernel_stop(signr)) { |
| 1877 | /* |
| 1878 | * The default action is to stop all threads in |
| 1879 | * the thread group. The job control signals |
| 1880 | * do nothing in an orphaned pgrp, but SIGSTOP |
| 1881 | * always works. Note that siglock needs to be |
| 1882 | * dropped during the call to is_orphaned_pgrp() |
| 1883 | * because of lock ordering with tasklist_lock. |
| 1884 | * This allows an intervening SIGCONT to be posted. |
| 1885 | * We need to check for that and bail out if necessary. |
| 1886 | */ |
| 1887 | if (signr != SIGSTOP) { |
| 1888 | spin_unlock_irq(&sighand->siglock); |
| 1889 | |
| 1890 | /* signals can be posted during this window */ |
| 1891 | |
| 1892 | if (is_current_pgrp_orphaned()) |
| 1893 | goto relock; |
| 1894 | |
| 1895 | spin_lock_irq(&sighand->siglock); |
| 1896 | } |
| 1897 | |
| 1898 | if (likely(do_signal_stop(info->si_signo))) { |
| 1899 | /* It released the siglock. */ |
| 1900 | goto relock; |
| 1901 | } |
| 1902 | |
| 1903 | /* |
| 1904 | * We didn't actually stop, due to a race |
| 1905 | * with SIGCONT or something like that. |
| 1906 | */ |
| 1907 | continue; |
| 1908 | } |
| 1909 | |
| 1910 | spin_unlock_irq(&sighand->siglock); |
| 1911 | |
| 1912 | /* |
| 1913 | * Anything else is fatal, maybe with a core dump. |
| 1914 | */ |
| 1915 | current->flags |= PF_SIGNALED; |
| 1916 | |
| 1917 | if (sig_kernel_coredump(signr)) { |
| 1918 | if (print_fatal_signals) |
| 1919 | print_fatal_signal(regs, info->si_signo); |
| 1920 | /* |
| 1921 | * If it was able to dump core, this kills all |
| 1922 | * other threads in the group and synchronizes with |
| 1923 | * their demise. If we lost the race with another |
| 1924 | * thread getting here, it set group_exit_code |
| 1925 | * first and our do_group_exit call below will use |
| 1926 | * that value and ignore the one we pass it. |
| 1927 | */ |
| 1928 | do_coredump(info->si_signo, info->si_signo, regs); |
| 1929 | } |
| 1930 | |
| 1931 | /* |
| 1932 | * Death signals, no core dump. |
| 1933 | */ |
| 1934 | do_group_exit(info->si_signo); |
| 1935 | /* NOTREACHED */ |
| 1936 | } |
| 1937 | spin_unlock_irq(&sighand->siglock); |
| 1938 | return signr; |
| 1939 | } |
| 1940 | |
| 1941 | void exit_signals(struct task_struct *tsk) |
| 1942 | { |
| 1943 | int group_stop = 0; |
| 1944 | struct task_struct *t; |
| 1945 | |
| 1946 | if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { |
| 1947 | tsk->flags |= PF_EXITING; |
| 1948 | return; |
| 1949 | } |
| 1950 | |
| 1951 | spin_lock_irq(&tsk->sighand->siglock); |
| 1952 | /* |
| 1953 | * From now this task is not visible for group-wide signals, |
| 1954 | * see wants_signal(), do_signal_stop(). |
| 1955 | */ |
| 1956 | tsk->flags |= PF_EXITING; |
| 1957 | if (!signal_pending(tsk)) |
| 1958 | goto out; |
| 1959 | |
| 1960 | /* It could be that __group_complete_signal() choose us to |
| 1961 | * notify about group-wide signal. Another thread should be |
| 1962 | * woken now to take the signal since we will not. |
| 1963 | */ |
| 1964 | for (t = tsk; (t = next_thread(t)) != tsk; ) |
| 1965 | if (!signal_pending(t) && !(t->flags & PF_EXITING)) |
| 1966 | recalc_sigpending_and_wake(t); |
| 1967 | |
| 1968 | if (unlikely(tsk->signal->group_stop_count) && |
| 1969 | !--tsk->signal->group_stop_count) { |
| 1970 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
| 1971 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
| 1972 | } |
| 1973 | out: |
| 1974 | spin_unlock_irq(&tsk->sighand->siglock); |
| 1975 | |
| 1976 | if (unlikely(group_stop)) { |
| 1977 | read_lock(&tasklist_lock); |
| 1978 | do_notify_parent_cldstop(tsk, group_stop); |
| 1979 | read_unlock(&tasklist_lock); |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | EXPORT_SYMBOL(recalc_sigpending); |
| 1984 | EXPORT_SYMBOL_GPL(dequeue_signal); |
| 1985 | EXPORT_SYMBOL(flush_signals); |
| 1986 | EXPORT_SYMBOL(force_sig); |
| 1987 | EXPORT_SYMBOL(send_sig); |
| 1988 | EXPORT_SYMBOL(send_sig_info); |
| 1989 | EXPORT_SYMBOL(sigprocmask); |
| 1990 | EXPORT_SYMBOL(block_all_signals); |
| 1991 | EXPORT_SYMBOL(unblock_all_signals); |
| 1992 | |
| 1993 | |
| 1994 | /* |
| 1995 | * System call entry points. |
| 1996 | */ |
| 1997 | |
| 1998 | SYSCALL_DEFINE0(restart_syscall) |
| 1999 | { |
| 2000 | struct restart_block *restart = ¤t_thread_info()->restart_block; |
| 2001 | return restart->fn(restart); |
| 2002 | } |
| 2003 | |
| 2004 | long do_no_restart_syscall(struct restart_block *param) |
| 2005 | { |
| 2006 | return -EINTR; |
| 2007 | } |
| 2008 | |
| 2009 | /* |
| 2010 | * We don't need to get the kernel lock - this is all local to this |
| 2011 | * particular thread.. (and that's good, because this is _heavily_ |
| 2012 | * used by various programs) |
| 2013 | */ |
| 2014 | |
| 2015 | /* |
| 2016 | * This is also useful for kernel threads that want to temporarily |
| 2017 | * (or permanently) block certain signals. |
| 2018 | * |
| 2019 | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel |
| 2020 | * interface happily blocks "unblockable" signals like SIGKILL |
| 2021 | * and friends. |
| 2022 | */ |
| 2023 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
| 2024 | { |
| 2025 | int error; |
| 2026 | |
| 2027 | spin_lock_irq(¤t->sighand->siglock); |
| 2028 | if (oldset) |
| 2029 | *oldset = current->blocked; |
| 2030 | |
| 2031 | error = 0; |
| 2032 | switch (how) { |
| 2033 | case SIG_BLOCK: |
| 2034 | sigorsets(¤t->blocked, ¤t->blocked, set); |
| 2035 | break; |
| 2036 | case SIG_UNBLOCK: |
| 2037 | signandsets(¤t->blocked, ¤t->blocked, set); |
| 2038 | break; |
| 2039 | case SIG_SETMASK: |
| 2040 | current->blocked = *set; |
| 2041 | break; |
| 2042 | default: |
| 2043 | error = -EINVAL; |
| 2044 | } |
| 2045 | recalc_sigpending(); |
| 2046 | spin_unlock_irq(¤t->sighand->siglock); |
| 2047 | |
| 2048 | return error; |
| 2049 | } |
| 2050 | |
| 2051 | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, |
| 2052 | sigset_t __user *, oset, size_t, sigsetsize) |
| 2053 | { |
| 2054 | int error = -EINVAL; |
| 2055 | sigset_t old_set, new_set; |
| 2056 | |
| 2057 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2058 | if (sigsetsize != sizeof(sigset_t)) |
| 2059 | goto out; |
| 2060 | |
| 2061 | if (set) { |
| 2062 | error = -EFAULT; |
| 2063 | if (copy_from_user(&new_set, set, sizeof(*set))) |
| 2064 | goto out; |
| 2065 | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 2066 | |
| 2067 | error = sigprocmask(how, &new_set, &old_set); |
| 2068 | if (error) |
| 2069 | goto out; |
| 2070 | if (oset) |
| 2071 | goto set_old; |
| 2072 | } else if (oset) { |
| 2073 | spin_lock_irq(¤t->sighand->siglock); |
| 2074 | old_set = current->blocked; |
| 2075 | spin_unlock_irq(¤t->sighand->siglock); |
| 2076 | |
| 2077 | set_old: |
| 2078 | error = -EFAULT; |
| 2079 | if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| 2080 | goto out; |
| 2081 | } |
| 2082 | error = 0; |
| 2083 | out: |
| 2084 | return error; |
| 2085 | } |
| 2086 | |
| 2087 | long do_sigpending(void __user *set, unsigned long sigsetsize) |
| 2088 | { |
| 2089 | long error = -EINVAL; |
| 2090 | sigset_t pending; |
| 2091 | |
| 2092 | if (sigsetsize > sizeof(sigset_t)) |
| 2093 | goto out; |
| 2094 | |
| 2095 | spin_lock_irq(¤t->sighand->siglock); |
| 2096 | sigorsets(&pending, ¤t->pending.signal, |
| 2097 | ¤t->signal->shared_pending.signal); |
| 2098 | spin_unlock_irq(¤t->sighand->siglock); |
| 2099 | |
| 2100 | /* Outside the lock because only this thread touches it. */ |
| 2101 | sigandsets(&pending, ¤t->blocked, &pending); |
| 2102 | |
| 2103 | error = -EFAULT; |
| 2104 | if (!copy_to_user(set, &pending, sigsetsize)) |
| 2105 | error = 0; |
| 2106 | |
| 2107 | out: |
| 2108 | return error; |
| 2109 | } |
| 2110 | |
| 2111 | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) |
| 2112 | { |
| 2113 | return do_sigpending(set, sigsetsize); |
| 2114 | } |
| 2115 | |
| 2116 | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER |
| 2117 | |
| 2118 | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) |
| 2119 | { |
| 2120 | int err; |
| 2121 | |
| 2122 | if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) |
| 2123 | return -EFAULT; |
| 2124 | if (from->si_code < 0) |
| 2125 | return __copy_to_user(to, from, sizeof(siginfo_t)) |
| 2126 | ? -EFAULT : 0; |
| 2127 | /* |
| 2128 | * If you change siginfo_t structure, please be sure |
| 2129 | * this code is fixed accordingly. |
| 2130 | * Please remember to update the signalfd_copyinfo() function |
| 2131 | * inside fs/signalfd.c too, in case siginfo_t changes. |
| 2132 | * It should never copy any pad contained in the structure |
| 2133 | * to avoid security leaks, but must copy the generic |
| 2134 | * 3 ints plus the relevant union member. |
| 2135 | */ |
| 2136 | err = __put_user(from->si_signo, &to->si_signo); |
| 2137 | err |= __put_user(from->si_errno, &to->si_errno); |
| 2138 | err |= __put_user((short)from->si_code, &to->si_code); |
| 2139 | switch (from->si_code & __SI_MASK) { |
| 2140 | case __SI_KILL: |
| 2141 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2142 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2143 | break; |
| 2144 | case __SI_TIMER: |
| 2145 | err |= __put_user(from->si_tid, &to->si_tid); |
| 2146 | err |= __put_user(from->si_overrun, &to->si_overrun); |
| 2147 | err |= __put_user(from->si_ptr, &to->si_ptr); |
| 2148 | break; |
| 2149 | case __SI_POLL: |
| 2150 | err |= __put_user(from->si_band, &to->si_band); |
| 2151 | err |= __put_user(from->si_fd, &to->si_fd); |
| 2152 | break; |
| 2153 | case __SI_FAULT: |
| 2154 | err |= __put_user(from->si_addr, &to->si_addr); |
| 2155 | #ifdef __ARCH_SI_TRAPNO |
| 2156 | err |= __put_user(from->si_trapno, &to->si_trapno); |
| 2157 | #endif |
| 2158 | break; |
| 2159 | case __SI_CHLD: |
| 2160 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2161 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2162 | err |= __put_user(from->si_status, &to->si_status); |
| 2163 | err |= __put_user(from->si_utime, &to->si_utime); |
| 2164 | err |= __put_user(from->si_stime, &to->si_stime); |
| 2165 | break; |
| 2166 | case __SI_RT: /* This is not generated by the kernel as of now. */ |
| 2167 | case __SI_MESGQ: /* But this is */ |
| 2168 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2169 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2170 | err |= __put_user(from->si_ptr, &to->si_ptr); |
| 2171 | break; |
| 2172 | default: /* this is just in case for now ... */ |
| 2173 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2174 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2175 | break; |
| 2176 | } |
| 2177 | return err; |
| 2178 | } |
| 2179 | |
| 2180 | #endif |
| 2181 | |
| 2182 | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, |
| 2183 | siginfo_t __user *, uinfo, const struct timespec __user *, uts, |
| 2184 | size_t, sigsetsize) |
| 2185 | { |
| 2186 | int ret, sig; |
| 2187 | sigset_t these; |
| 2188 | struct timespec ts; |
| 2189 | siginfo_t info; |
| 2190 | long timeout = 0; |
| 2191 | |
| 2192 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2193 | if (sigsetsize != sizeof(sigset_t)) |
| 2194 | return -EINVAL; |
| 2195 | |
| 2196 | if (copy_from_user(&these, uthese, sizeof(these))) |
| 2197 | return -EFAULT; |
| 2198 | |
| 2199 | /* |
| 2200 | * Invert the set of allowed signals to get those we |
| 2201 | * want to block. |
| 2202 | */ |
| 2203 | sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 2204 | signotset(&these); |
| 2205 | |
| 2206 | if (uts) { |
| 2207 | if (copy_from_user(&ts, uts, sizeof(ts))) |
| 2208 | return -EFAULT; |
| 2209 | if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 |
| 2210 | || ts.tv_sec < 0) |
| 2211 | return -EINVAL; |
| 2212 | } |
| 2213 | |
| 2214 | spin_lock_irq(¤t->sighand->siglock); |
| 2215 | sig = dequeue_signal(current, &these, &info); |
| 2216 | if (!sig) { |
| 2217 | timeout = MAX_SCHEDULE_TIMEOUT; |
| 2218 | if (uts) |
| 2219 | timeout = (timespec_to_jiffies(&ts) |
| 2220 | + (ts.tv_sec || ts.tv_nsec)); |
| 2221 | |
| 2222 | if (timeout) { |
| 2223 | /* None ready -- temporarily unblock those we're |
| 2224 | * interested while we are sleeping in so that we'll |
| 2225 | * be awakened when they arrive. */ |
| 2226 | current->real_blocked = current->blocked; |
| 2227 | sigandsets(¤t->blocked, ¤t->blocked, &these); |
| 2228 | recalc_sigpending(); |
| 2229 | spin_unlock_irq(¤t->sighand->siglock); |
| 2230 | |
| 2231 | timeout = schedule_timeout_interruptible(timeout); |
| 2232 | |
| 2233 | spin_lock_irq(¤t->sighand->siglock); |
| 2234 | sig = dequeue_signal(current, &these, &info); |
| 2235 | current->blocked = current->real_blocked; |
| 2236 | siginitset(¤t->real_blocked, 0); |
| 2237 | recalc_sigpending(); |
| 2238 | } |
| 2239 | } |
| 2240 | spin_unlock_irq(¤t->sighand->siglock); |
| 2241 | |
| 2242 | if (sig) { |
| 2243 | ret = sig; |
| 2244 | if (uinfo) { |
| 2245 | if (copy_siginfo_to_user(uinfo, &info)) |
| 2246 | ret = -EFAULT; |
| 2247 | } |
| 2248 | } else { |
| 2249 | ret = -EAGAIN; |
| 2250 | if (timeout) |
| 2251 | ret = -EINTR; |
| 2252 | } |
| 2253 | |
| 2254 | return ret; |
| 2255 | } |
| 2256 | |
| 2257 | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) |
| 2258 | { |
| 2259 | struct siginfo info; |
| 2260 | |
| 2261 | info.si_signo = sig; |
| 2262 | info.si_errno = 0; |
| 2263 | info.si_code = SI_USER; |
| 2264 | info.si_pid = task_tgid_vnr(current); |
| 2265 | info.si_uid = current_uid(); |
| 2266 | |
| 2267 | return kill_something_info(sig, &info, pid); |
| 2268 | } |
| 2269 | |
| 2270 | static int |
| 2271 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
| 2272 | { |
| 2273 | struct task_struct *p; |
| 2274 | int error = -ESRCH; |
| 2275 | |
| 2276 | rcu_read_lock(); |
| 2277 | p = find_task_by_vpid(pid); |
| 2278 | if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { |
| 2279 | error = check_kill_permission(sig, info, p); |
| 2280 | /* |
| 2281 | * The null signal is a permissions and process existence |
| 2282 | * probe. No signal is actually delivered. |
| 2283 | */ |
| 2284 | if (!error && sig) { |
| 2285 | error = do_send_sig_info(sig, info, p, false); |
| 2286 | /* |
| 2287 | * If lock_task_sighand() failed we pretend the task |
| 2288 | * dies after receiving the signal. The window is tiny, |
| 2289 | * and the signal is private anyway. |
| 2290 | */ |
| 2291 | if (unlikely(error == -ESRCH)) |
| 2292 | error = 0; |
| 2293 | } |
| 2294 | } |
| 2295 | rcu_read_unlock(); |
| 2296 | |
| 2297 | return error; |
| 2298 | } |
| 2299 | |
| 2300 | static int do_tkill(pid_t tgid, pid_t pid, int sig) |
| 2301 | { |
| 2302 | struct siginfo info; |
| 2303 | |
| 2304 | info.si_signo = sig; |
| 2305 | info.si_errno = 0; |
| 2306 | info.si_code = SI_TKILL; |
| 2307 | info.si_pid = task_tgid_vnr(current); |
| 2308 | info.si_uid = current_uid(); |
| 2309 | |
| 2310 | return do_send_specific(tgid, pid, sig, &info); |
| 2311 | } |
| 2312 | |
| 2313 | /** |
| 2314 | * sys_tgkill - send signal to one specific thread |
| 2315 | * @tgid: the thread group ID of the thread |
| 2316 | * @pid: the PID of the thread |
| 2317 | * @sig: signal to be sent |
| 2318 | * |
| 2319 | * This syscall also checks the @tgid and returns -ESRCH even if the PID |
| 2320 | * exists but it's not belonging to the target process anymore. This |
| 2321 | * method solves the problem of threads exiting and PIDs getting reused. |
| 2322 | */ |
| 2323 | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) |
| 2324 | { |
| 2325 | /* This is only valid for single tasks */ |
| 2326 | if (pid <= 0 || tgid <= 0) |
| 2327 | return -EINVAL; |
| 2328 | |
| 2329 | return do_tkill(tgid, pid, sig); |
| 2330 | } |
| 2331 | |
| 2332 | /* |
| 2333 | * Send a signal to only one task, even if it's a CLONE_THREAD task. |
| 2334 | */ |
| 2335 | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) |
| 2336 | { |
| 2337 | /* This is only valid for single tasks */ |
| 2338 | if (pid <= 0) |
| 2339 | return -EINVAL; |
| 2340 | |
| 2341 | return do_tkill(0, pid, sig); |
| 2342 | } |
| 2343 | |
| 2344 | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, |
| 2345 | siginfo_t __user *, uinfo) |
| 2346 | { |
| 2347 | siginfo_t info; |
| 2348 | |
| 2349 | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) |
| 2350 | return -EFAULT; |
| 2351 | |
| 2352 | /* Not even root can pretend to send signals from the kernel. |
| 2353 | Nor can they impersonate a kill(), which adds source info. */ |
| 2354 | if (info.si_code >= 0) |
| 2355 | return -EPERM; |
| 2356 | info.si_signo = sig; |
| 2357 | |
| 2358 | /* POSIX.1b doesn't mention process groups. */ |
| 2359 | return kill_proc_info(sig, &info, pid); |
| 2360 | } |
| 2361 | |
| 2362 | long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) |
| 2363 | { |
| 2364 | /* This is only valid for single tasks */ |
| 2365 | if (pid <= 0 || tgid <= 0) |
| 2366 | return -EINVAL; |
| 2367 | |
| 2368 | /* Not even root can pretend to send signals from the kernel. |
| 2369 | Nor can they impersonate a kill(), which adds source info. */ |
| 2370 | if (info->si_code >= 0) |
| 2371 | return -EPERM; |
| 2372 | info->si_signo = sig; |
| 2373 | |
| 2374 | return do_send_specific(tgid, pid, sig, info); |
| 2375 | } |
| 2376 | |
| 2377 | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, |
| 2378 | siginfo_t __user *, uinfo) |
| 2379 | { |
| 2380 | siginfo_t info; |
| 2381 | |
| 2382 | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) |
| 2383 | return -EFAULT; |
| 2384 | |
| 2385 | return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); |
| 2386 | } |
| 2387 | |
| 2388 | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) |
| 2389 | { |
| 2390 | struct task_struct *t = current; |
| 2391 | struct k_sigaction *k; |
| 2392 | sigset_t mask; |
| 2393 | |
| 2394 | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) |
| 2395 | return -EINVAL; |
| 2396 | |
| 2397 | k = &t->sighand->action[sig-1]; |
| 2398 | |
| 2399 | spin_lock_irq(¤t->sighand->siglock); |
| 2400 | if (oact) |
| 2401 | *oact = *k; |
| 2402 | |
| 2403 | if (act) { |
| 2404 | sigdelsetmask(&act->sa.sa_mask, |
| 2405 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 2406 | *k = *act; |
| 2407 | /* |
| 2408 | * POSIX 3.3.1.3: |
| 2409 | * "Setting a signal action to SIG_IGN for a signal that is |
| 2410 | * pending shall cause the pending signal to be discarded, |
| 2411 | * whether or not it is blocked." |
| 2412 | * |
| 2413 | * "Setting a signal action to SIG_DFL for a signal that is |
| 2414 | * pending and whose default action is to ignore the signal |
| 2415 | * (for example, SIGCHLD), shall cause the pending signal to |
| 2416 | * be discarded, whether or not it is blocked" |
| 2417 | */ |
| 2418 | if (sig_handler_ignored(sig_handler(t, sig), sig)) { |
| 2419 | sigemptyset(&mask); |
| 2420 | sigaddset(&mask, sig); |
| 2421 | rm_from_queue_full(&mask, &t->signal->shared_pending); |
| 2422 | do { |
| 2423 | rm_from_queue_full(&mask, &t->pending); |
| 2424 | t = next_thread(t); |
| 2425 | } while (t != current); |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | spin_unlock_irq(¤t->sighand->siglock); |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | int |
| 2434 | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) |
| 2435 | { |
| 2436 | stack_t oss; |
| 2437 | int error; |
| 2438 | |
| 2439 | oss.ss_sp = (void __user *) current->sas_ss_sp; |
| 2440 | oss.ss_size = current->sas_ss_size; |
| 2441 | oss.ss_flags = sas_ss_flags(sp); |
| 2442 | |
| 2443 | if (uss) { |
| 2444 | void __user *ss_sp; |
| 2445 | size_t ss_size; |
| 2446 | int ss_flags; |
| 2447 | |
| 2448 | error = -EFAULT; |
| 2449 | if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) |
| 2450 | goto out; |
| 2451 | error = __get_user(ss_sp, &uss->ss_sp) | |
| 2452 | __get_user(ss_flags, &uss->ss_flags) | |
| 2453 | __get_user(ss_size, &uss->ss_size); |
| 2454 | if (error) |
| 2455 | goto out; |
| 2456 | |
| 2457 | error = -EPERM; |
| 2458 | if (on_sig_stack(sp)) |
| 2459 | goto out; |
| 2460 | |
| 2461 | error = -EINVAL; |
| 2462 | /* |
| 2463 | * |
| 2464 | * Note - this code used to test ss_flags incorrectly |
| 2465 | * old code may have been written using ss_flags==0 |
| 2466 | * to mean ss_flags==SS_ONSTACK (as this was the only |
| 2467 | * way that worked) - this fix preserves that older |
| 2468 | * mechanism |
| 2469 | */ |
| 2470 | if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) |
| 2471 | goto out; |
| 2472 | |
| 2473 | if (ss_flags == SS_DISABLE) { |
| 2474 | ss_size = 0; |
| 2475 | ss_sp = NULL; |
| 2476 | } else { |
| 2477 | error = -ENOMEM; |
| 2478 | if (ss_size < MINSIGSTKSZ) |
| 2479 | goto out; |
| 2480 | } |
| 2481 | |
| 2482 | current->sas_ss_sp = (unsigned long) ss_sp; |
| 2483 | current->sas_ss_size = ss_size; |
| 2484 | } |
| 2485 | |
| 2486 | error = 0; |
| 2487 | if (uoss) { |
| 2488 | error = -EFAULT; |
| 2489 | if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) |
| 2490 | goto out; |
| 2491 | error = __put_user(oss.ss_sp, &uoss->ss_sp) | |
| 2492 | __put_user(oss.ss_size, &uoss->ss_size) | |
| 2493 | __put_user(oss.ss_flags, &uoss->ss_flags); |
| 2494 | } |
| 2495 | |
| 2496 | out: |
| 2497 | return error; |
| 2498 | } |
| 2499 | |
| 2500 | #ifdef __ARCH_WANT_SYS_SIGPENDING |
| 2501 | |
| 2502 | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) |
| 2503 | { |
| 2504 | return do_sigpending(set, sizeof(*set)); |
| 2505 | } |
| 2506 | |
| 2507 | #endif |
| 2508 | |
| 2509 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK |
| 2510 | /* Some platforms have their own version with special arguments others |
| 2511 | support only sys_rt_sigprocmask. */ |
| 2512 | |
| 2513 | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, |
| 2514 | old_sigset_t __user *, oset) |
| 2515 | { |
| 2516 | int error; |
| 2517 | old_sigset_t old_set, new_set; |
| 2518 | |
| 2519 | if (set) { |
| 2520 | error = -EFAULT; |
| 2521 | if (copy_from_user(&new_set, set, sizeof(*set))) |
| 2522 | goto out; |
| 2523 | new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 2524 | |
| 2525 | spin_lock_irq(¤t->sighand->siglock); |
| 2526 | old_set = current->blocked.sig[0]; |
| 2527 | |
| 2528 | error = 0; |
| 2529 | switch (how) { |
| 2530 | default: |
| 2531 | error = -EINVAL; |
| 2532 | break; |
| 2533 | case SIG_BLOCK: |
| 2534 | sigaddsetmask(¤t->blocked, new_set); |
| 2535 | break; |
| 2536 | case SIG_UNBLOCK: |
| 2537 | sigdelsetmask(¤t->blocked, new_set); |
| 2538 | break; |
| 2539 | case SIG_SETMASK: |
| 2540 | current->blocked.sig[0] = new_set; |
| 2541 | break; |
| 2542 | } |
| 2543 | |
| 2544 | recalc_sigpending(); |
| 2545 | spin_unlock_irq(¤t->sighand->siglock); |
| 2546 | if (error) |
| 2547 | goto out; |
| 2548 | if (oset) |
| 2549 | goto set_old; |
| 2550 | } else if (oset) { |
| 2551 | old_set = current->blocked.sig[0]; |
| 2552 | set_old: |
| 2553 | error = -EFAULT; |
| 2554 | if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| 2555 | goto out; |
| 2556 | } |
| 2557 | error = 0; |
| 2558 | out: |
| 2559 | return error; |
| 2560 | } |
| 2561 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ |
| 2562 | |
| 2563 | #ifdef __ARCH_WANT_SYS_RT_SIGACTION |
| 2564 | SYSCALL_DEFINE4(rt_sigaction, int, sig, |
| 2565 | const struct sigaction __user *, act, |
| 2566 | struct sigaction __user *, oact, |
| 2567 | size_t, sigsetsize) |
| 2568 | { |
| 2569 | struct k_sigaction new_sa, old_sa; |
| 2570 | int ret = -EINVAL; |
| 2571 | |
| 2572 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2573 | if (sigsetsize != sizeof(sigset_t)) |
| 2574 | goto out; |
| 2575 | |
| 2576 | if (act) { |
| 2577 | if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) |
| 2578 | return -EFAULT; |
| 2579 | } |
| 2580 | |
| 2581 | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); |
| 2582 | |
| 2583 | if (!ret && oact) { |
| 2584 | if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) |
| 2585 | return -EFAULT; |
| 2586 | } |
| 2587 | out: |
| 2588 | return ret; |
| 2589 | } |
| 2590 | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ |
| 2591 | |
| 2592 | #ifdef __ARCH_WANT_SYS_SGETMASK |
| 2593 | |
| 2594 | /* |
| 2595 | * For backwards compatibility. Functionality superseded by sigprocmask. |
| 2596 | */ |
| 2597 | SYSCALL_DEFINE0(sgetmask) |
| 2598 | { |
| 2599 | /* SMP safe */ |
| 2600 | return current->blocked.sig[0]; |
| 2601 | } |
| 2602 | |
| 2603 | SYSCALL_DEFINE1(ssetmask, int, newmask) |
| 2604 | { |
| 2605 | int old; |
| 2606 | |
| 2607 | spin_lock_irq(¤t->sighand->siglock); |
| 2608 | old = current->blocked.sig[0]; |
| 2609 | |
| 2610 | siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| |
| 2611 | sigmask(SIGSTOP))); |
| 2612 | recalc_sigpending(); |
| 2613 | spin_unlock_irq(¤t->sighand->siglock); |
| 2614 | |
| 2615 | return old; |
| 2616 | } |
| 2617 | #endif /* __ARCH_WANT_SGETMASK */ |
| 2618 | |
| 2619 | #ifdef __ARCH_WANT_SYS_SIGNAL |
| 2620 | /* |
| 2621 | * For backwards compatibility. Functionality superseded by sigaction. |
| 2622 | */ |
| 2623 | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) |
| 2624 | { |
| 2625 | struct k_sigaction new_sa, old_sa; |
| 2626 | int ret; |
| 2627 | |
| 2628 | new_sa.sa.sa_handler = handler; |
| 2629 | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; |
| 2630 | sigemptyset(&new_sa.sa.sa_mask); |
| 2631 | |
| 2632 | ret = do_sigaction(sig, &new_sa, &old_sa); |
| 2633 | |
| 2634 | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; |
| 2635 | } |
| 2636 | #endif /* __ARCH_WANT_SYS_SIGNAL */ |
| 2637 | |
| 2638 | #ifdef __ARCH_WANT_SYS_PAUSE |
| 2639 | |
| 2640 | SYSCALL_DEFINE0(pause) |
| 2641 | { |
| 2642 | current->state = TASK_INTERRUPTIBLE; |
| 2643 | schedule(); |
| 2644 | return -ERESTARTNOHAND; |
| 2645 | } |
| 2646 | |
| 2647 | #endif |
| 2648 | |
| 2649 | #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND |
| 2650 | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) |
| 2651 | { |
| 2652 | sigset_t newset; |
| 2653 | |
| 2654 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2655 | if (sigsetsize != sizeof(sigset_t)) |
| 2656 | return -EINVAL; |
| 2657 | |
| 2658 | if (copy_from_user(&newset, unewset, sizeof(newset))) |
| 2659 | return -EFAULT; |
| 2660 | sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 2661 | |
| 2662 | spin_lock_irq(¤t->sighand->siglock); |
| 2663 | current->saved_sigmask = current->blocked; |
| 2664 | current->blocked = newset; |
| 2665 | recalc_sigpending(); |
| 2666 | spin_unlock_irq(¤t->sighand->siglock); |
| 2667 | |
| 2668 | current->state = TASK_INTERRUPTIBLE; |
| 2669 | schedule(); |
| 2670 | set_restore_sigmask(); |
| 2671 | return -ERESTARTNOHAND; |
| 2672 | } |
| 2673 | #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ |
| 2674 | |
| 2675 | __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) |
| 2676 | { |
| 2677 | return NULL; |
| 2678 | } |
| 2679 | |
| 2680 | void __init signals_init(void) |
| 2681 | { |
| 2682 | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); |
| 2683 | } |
| 2684 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9
