Root/kernel/time.c

1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/clocksource.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/slab.h>
39#include <linux/math64.h>
40#include <linux/ptrace.h>
41
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44
45#include "timeconst.h"
46
47/*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63SYSCALL_DEFINE1(time, time_t __user *, tloc)
64{
65    time_t i = get_seconds();
66
67    if (tloc) {
68        if (put_user(i,tloc))
69            return -EFAULT;
70    }
71    force_successful_syscall_return();
72    return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83{
84    struct timespec tv;
85    int err;
86
87    if (get_user(tv.tv_sec, tptr))
88        return -EFAULT;
89
90    tv.tv_nsec = 0;
91
92    err = security_settime(&tv, NULL);
93    if (err)
94        return err;
95
96    do_settimeofday(&tv);
97    return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103        struct timezone __user *, tz)
104{
105    if (likely(tv != NULL)) {
106        struct timeval ktv;
107        do_gettimeofday(&ktv);
108        if (copy_to_user(tv, &ktv, sizeof(ktv)))
109            return -EFAULT;
110    }
111    if (unlikely(tz != NULL)) {
112        if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113            return -EFAULT;
114    }
115    return 0;
116}
117
118/*
119 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * local time.
121 *
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
127 *
128 * - TYT, 1992-01-01
129 *
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
133 */
134static inline void warp_clock(void)
135{
136    write_seqlock_irq(&xtime_lock);
137    wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138    xtime.tv_sec += sys_tz.tz_minuteswest * 60;
139    update_xtime_cache(0);
140    write_sequnlock_irq(&xtime_lock);
141    clock_was_set();
142}
143
144/*
145 * In case for some reason the CMOS clock has not already been running
146 * in UTC, but in some local time: The first time we set the timezone,
147 * we will warp the clock so that it is ticking UTC time instead of
148 * local time. Presumably, if someone is setting the timezone then we
149 * are running in an environment where the programs understand about
150 * timezones. This should be done at boot time in the /etc/rc script,
151 * as soon as possible, so that the clock can be set right. Otherwise,
152 * various programs will get confused when the clock gets warped.
153 */
154
155int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
156{
157    static int firsttime = 1;
158    int error = 0;
159
160    if (tv && !timespec_valid(tv))
161        return -EINVAL;
162
163    error = security_settime(tv, tz);
164    if (error)
165        return error;
166
167    if (tz) {
168        /* SMP safe, global irq locking makes it work. */
169        sys_tz = *tz;
170        update_vsyscall_tz();
171        if (firsttime) {
172            firsttime = 0;
173            if (!tv)
174                warp_clock();
175        }
176    }
177    if (tv)
178    {
179        /* SMP safe, again the code in arch/foo/time.c should
180         * globally block out interrupts when it runs.
181         */
182        return do_settimeofday(tv);
183    }
184    return 0;
185}
186
187SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
188        struct timezone __user *, tz)
189{
190    struct timeval user_tv;
191    struct timespec new_ts;
192    struct timezone new_tz;
193
194    if (tv) {
195        if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196            return -EFAULT;
197        new_ts.tv_sec = user_tv.tv_sec;
198        new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
199    }
200    if (tz) {
201        if (copy_from_user(&new_tz, tz, sizeof(*tz)))
202            return -EFAULT;
203    }
204
205    return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
206}
207
208SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
209{
210    struct timex txc; /* Local copy of parameter */
211    int ret;
212
213    /* Copy the user data space into the kernel copy
214     * structure. But bear in mind that the structures
215     * may change
216     */
217    if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218        return -EFAULT;
219    ret = do_adjtimex(&txc);
220    return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
221}
222
223/**
224 * current_fs_time - Return FS time
225 * @sb: Superblock.
226 *
227 * Return the current time truncated to the time granularity supported by
228 * the fs.
229 */
230struct timespec current_fs_time(struct super_block *sb)
231{
232    struct timespec now = current_kernel_time();
233    return timespec_trunc(now, sb->s_time_gran);
234}
235EXPORT_SYMBOL(current_fs_time);
236
237/*
238 * Convert jiffies to milliseconds and back.
239 *
240 * Avoid unnecessary multiplications/divisions in the
241 * two most common HZ cases:
242 */
243unsigned int inline jiffies_to_msecs(const unsigned long j)
244{
245#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
246    return (MSEC_PER_SEC / HZ) * j;
247#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
248    return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
249#else
250# if BITS_PER_LONG == 32
251    return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
252# else
253    return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
254# endif
255#endif
256}
257EXPORT_SYMBOL(jiffies_to_msecs);
258
259unsigned int inline jiffies_to_usecs(const unsigned long j)
260{
261#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
262    return (USEC_PER_SEC / HZ) * j;
263#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
264    return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
265#else
266# if BITS_PER_LONG == 32
267    return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268# else
269    return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270# endif
271#endif
272}
273EXPORT_SYMBOL(jiffies_to_usecs);
274
275/**
276 * timespec_trunc - Truncate timespec to a granularity
277 * @t: Timespec
278 * @gran: Granularity in ns.
279 *
280 * Truncate a timespec to a granularity. gran must be smaller than a second.
281 * Always rounds down.
282 *
283 * This function should be only used for timestamps returned by
284 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
285 * it doesn't handle the better resolution of the latter.
286 */
287struct timespec timespec_trunc(struct timespec t, unsigned gran)
288{
289    /*
290     * Division is pretty slow so avoid it for common cases.
291     * Currently current_kernel_time() never returns better than
292     * jiffies resolution. Exploit that.
293     */
294    if (gran <= jiffies_to_usecs(1) * 1000) {
295        /* nothing */
296    } else if (gran == 1000000000) {
297        t.tv_nsec = 0;
298    } else {
299        t.tv_nsec -= t.tv_nsec % gran;
300    }
301    return t;
302}
303EXPORT_SYMBOL(timespec_trunc);
304
305#ifndef CONFIG_GENERIC_TIME
306/*
307 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
308 * and therefore only yields usec accuracy
309 */
310void getnstimeofday(struct timespec *tv)
311{
312    struct timeval x;
313
314    do_gettimeofday(&x);
315    tv->tv_sec = x.tv_sec;
316    tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
317}
318EXPORT_SYMBOL_GPL(getnstimeofday);
319#endif
320
321/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
322 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
323 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324 *
325 * [For the Julian calendar (which was used in Russia before 1917,
326 * Britain & colonies before 1752, anywhere else before 1582,
327 * and is still in use by some communities) leave out the
328 * -year/100+year/400 terms, and add 10.]
329 *
330 * This algorithm was first published by Gauss (I think).
331 *
332 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
333 * machines where long is 32-bit! (However, as time_t is signed, we
334 * will already get problems at other places on 2038-01-19 03:14:08)
335 */
336unsigned long
337mktime(const unsigned int year0, const unsigned int mon0,
338       const unsigned int day, const unsigned int hour,
339       const unsigned int min, const unsigned int sec)
340{
341    unsigned int mon = mon0, year = year0;
342
343    /* 1..12 -> 11,12,1..10 */
344    if (0 >= (int) (mon -= 2)) {
345        mon += 12; /* Puts Feb last since it has leap day */
346        year -= 1;
347    }
348
349    return ((((unsigned long)
350          (year/4 - year/100 + year/400 + 367*mon/12 + day) +
351          year*365 - 719499
352        )*24 + hour /* now have hours */
353      )*60 + min /* now have minutes */
354    )*60 + sec; /* finally seconds */
355}
356
357EXPORT_SYMBOL(mktime);
358
359/**
360 * set_normalized_timespec - set timespec sec and nsec parts and normalize
361 *
362 * @ts: pointer to timespec variable to be set
363 * @sec: seconds to set
364 * @nsec: nanoseconds to set
365 *
366 * Set seconds and nanoseconds field of a timespec variable and
367 * normalize to the timespec storage format
368 *
369 * Note: The tv_nsec part is always in the range of
370 * 0 <= tv_nsec < NSEC_PER_SEC
371 * For negative values only the tv_sec field is negative !
372 */
373void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
374{
375    while (nsec >= NSEC_PER_SEC) {
376        /*
377         * The following asm() prevents the compiler from
378         * optimising this loop into a modulo operation. See
379         * also __iter_div_u64_rem() in include/linux/time.h
380         */
381        asm("" : "+rm"(nsec));
382        nsec -= NSEC_PER_SEC;
383        ++sec;
384    }
385    while (nsec < 0) {
386        asm("" : "+rm"(nsec));
387        nsec += NSEC_PER_SEC;
388        --sec;
389    }
390    ts->tv_sec = sec;
391    ts->tv_nsec = nsec;
392}
393EXPORT_SYMBOL(set_normalized_timespec);
394
395/**
396 * ns_to_timespec - Convert nanoseconds to timespec
397 * @nsec: the nanoseconds value to be converted
398 *
399 * Returns the timespec representation of the nsec parameter.
400 */
401struct timespec ns_to_timespec(const s64 nsec)
402{
403    struct timespec ts;
404    s32 rem;
405
406    if (!nsec)
407        return (struct timespec) {0, 0};
408
409    ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
410    if (unlikely(rem < 0)) {
411        ts.tv_sec--;
412        rem += NSEC_PER_SEC;
413    }
414    ts.tv_nsec = rem;
415
416    return ts;
417}
418EXPORT_SYMBOL(ns_to_timespec);
419
420/**
421 * ns_to_timeval - Convert nanoseconds to timeval
422 * @nsec: the nanoseconds value to be converted
423 *
424 * Returns the timeval representation of the nsec parameter.
425 */
426struct timeval ns_to_timeval(const s64 nsec)
427{
428    struct timespec ts = ns_to_timespec(nsec);
429    struct timeval tv;
430
431    tv.tv_sec = ts.tv_sec;
432    tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
433
434    return tv;
435}
436EXPORT_SYMBOL(ns_to_timeval);
437
438/*
439 * When we convert to jiffies then we interpret incoming values
440 * the following way:
441 *
442 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
443 *
444 * - 'too large' values [that would result in larger than
445 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
446 *
447 * - all other values are converted to jiffies by either multiplying
448 * the input value by a factor or dividing it with a factor
449 *
450 * We must also be careful about 32-bit overflows.
451 */
452unsigned long msecs_to_jiffies(const unsigned int m)
453{
454    /*
455     * Negative value, means infinite timeout:
456     */
457    if ((int)m < 0)
458        return MAX_JIFFY_OFFSET;
459
460#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
461    /*
462     * HZ is equal to or smaller than 1000, and 1000 is a nice
463     * round multiple of HZ, divide with the factor between them,
464     * but round upwards:
465     */
466    return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
467#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
468    /*
469     * HZ is larger than 1000, and HZ is a nice round multiple of
470     * 1000 - simply multiply with the factor between them.
471     *
472     * But first make sure the multiplication result cannot
473     * overflow:
474     */
475    if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
476        return MAX_JIFFY_OFFSET;
477
478    return m * (HZ / MSEC_PER_SEC);
479#else
480    /*
481     * Generic case - multiply, round and divide. But first
482     * check that if we are doing a net multiplication, that
483     * we wouldn't overflow:
484     */
485    if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
486        return MAX_JIFFY_OFFSET;
487
488    return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
489        >> MSEC_TO_HZ_SHR32;
490#endif
491}
492EXPORT_SYMBOL(msecs_to_jiffies);
493
494unsigned long usecs_to_jiffies(const unsigned int u)
495{
496    if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
497        return MAX_JIFFY_OFFSET;
498#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
499    return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
500#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
501    return u * (HZ / USEC_PER_SEC);
502#else
503    return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
504        >> USEC_TO_HZ_SHR32;
505#endif
506}
507EXPORT_SYMBOL(usecs_to_jiffies);
508
509/*
510 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
511 * that a remainder subtract here would not do the right thing as the
512 * resolution values don't fall on second boundries. I.e. the line:
513 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
514 *
515 * Rather, we just shift the bits off the right.
516 *
517 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
518 * value to a scaled second value.
519 */
520unsigned long
521timespec_to_jiffies(const struct timespec *value)
522{
523    unsigned long sec = value->tv_sec;
524    long nsec = value->tv_nsec + TICK_NSEC - 1;
525
526    if (sec >= MAX_SEC_IN_JIFFIES){
527        sec = MAX_SEC_IN_JIFFIES;
528        nsec = 0;
529    }
530    return (((u64)sec * SEC_CONVERSION) +
531        (((u64)nsec * NSEC_CONVERSION) >>
532         (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
533
534}
535EXPORT_SYMBOL(timespec_to_jiffies);
536
537void
538jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
539{
540    /*
541     * Convert jiffies to nanoseconds and separate with
542     * one divide.
543     */
544    u32 rem;
545    value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
546                    NSEC_PER_SEC, &rem);
547    value->tv_nsec = rem;
548}
549EXPORT_SYMBOL(jiffies_to_timespec);
550
551/* Same for "timeval"
552 *
553 * Well, almost. The problem here is that the real system resolution is
554 * in nanoseconds and the value being converted is in micro seconds.
555 * Also for some machines (those that use HZ = 1024, in-particular),
556 * there is a LARGE error in the tick size in microseconds.
557
558 * The solution we use is to do the rounding AFTER we convert the
559 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
560 * Instruction wise, this should cost only an additional add with carry
561 * instruction above the way it was done above.
562 */
563unsigned long
564timeval_to_jiffies(const struct timeval *value)
565{
566    unsigned long sec = value->tv_sec;
567    long usec = value->tv_usec;
568
569    if (sec >= MAX_SEC_IN_JIFFIES){
570        sec = MAX_SEC_IN_JIFFIES;
571        usec = 0;
572    }
573    return (((u64)sec * SEC_CONVERSION) +
574        (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
575         (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
576}
577EXPORT_SYMBOL(timeval_to_jiffies);
578
579void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
580{
581    /*
582     * Convert jiffies to nanoseconds and separate with
583     * one divide.
584     */
585    u32 rem;
586
587    value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
588                    NSEC_PER_SEC, &rem);
589    value->tv_usec = rem / NSEC_PER_USEC;
590}
591EXPORT_SYMBOL(jiffies_to_timeval);
592
593/*
594 * Convert jiffies/jiffies_64 to clock_t and back.
595 */
596clock_t jiffies_to_clock_t(long x)
597{
598#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
599# if HZ < USER_HZ
600    return x * (USER_HZ / HZ);
601# else
602    return x / (HZ / USER_HZ);
603# endif
604#else
605    return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
606#endif
607}
608EXPORT_SYMBOL(jiffies_to_clock_t);
609
610unsigned long clock_t_to_jiffies(unsigned long x)
611{
612#if (HZ % USER_HZ)==0
613    if (x >= ~0UL / (HZ / USER_HZ))
614        return ~0UL;
615    return x * (HZ / USER_HZ);
616#else
617    /* Don't worry about loss of precision here .. */
618    if (x >= ~0UL / HZ * USER_HZ)
619        return ~0UL;
620
621    /* .. but do try to contain it here */
622    return div_u64((u64)x * HZ, USER_HZ);
623#endif
624}
625EXPORT_SYMBOL(clock_t_to_jiffies);
626
627u64 jiffies_64_to_clock_t(u64 x)
628{
629#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
630# if HZ < USER_HZ
631    x = div_u64(x * USER_HZ, HZ);
632# elif HZ > USER_HZ
633    x = div_u64(x, HZ / USER_HZ);
634# else
635    /* Nothing to do */
636# endif
637#else
638    /*
639     * There are better ways that don't overflow early,
640     * but even this doesn't overflow in hundreds of years
641     * in 64 bits, so..
642     */
643    x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
644#endif
645    return x;
646}
647EXPORT_SYMBOL(jiffies_64_to_clock_t);
648
649u64 nsec_to_clock_t(u64 x)
650{
651#if (NSEC_PER_SEC % USER_HZ) == 0
652    return div_u64(x, NSEC_PER_SEC / USER_HZ);
653#elif (USER_HZ % 512) == 0
654    return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
655#else
656    /*
657         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
658         * overflow after 64.99 years.
659         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
660         */
661    return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
662#endif
663}
664
665#if (BITS_PER_LONG < 64)
666u64 get_jiffies_64(void)
667{
668    unsigned long seq;
669    u64 ret;
670
671    do {
672        seq = read_seqbegin(&xtime_lock);
673        ret = jiffies_64;
674    } while (read_seqretry(&xtime_lock, seq));
675    return ret;
676}
677EXPORT_SYMBOL(get_jiffies_64);
678#endif
679
680EXPORT_SYMBOL(jiffies);
681
682/*
683 * Add two timespec values and do a safety check for overflow.
684 * It's assumed that both values are valid (>= 0)
685 */
686struct timespec timespec_add_safe(const struct timespec lhs,
687                  const struct timespec rhs)
688{
689    struct timespec res;
690
691    set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
692                lhs.tv_nsec + rhs.tv_nsec);
693
694    if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
695        res.tv_sec = TIME_T_MAX;
696
697    return res;
698}
699

Archive Download this file



interactive