Root/
1 | /* |
2 | * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. |
3 | * |
4 | * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc. |
5 | * |
6 | * This program/include file is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU General Public License as published |
8 | * by the Free Software Foundation; either version 2 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program/include file is distributed in the hope that it will be |
12 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
13 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU General Public License |
17 | * along with this program (in the main directory of the Linux-NTFS |
18 | * distribution in the file COPYING); if not, write to the Free Software |
19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
20 | */ |
21 | |
22 | #include <linux/buffer_head.h> |
23 | #include <linux/gfp.h> |
24 | #include <linux/pagemap.h> |
25 | #include <linux/pagevec.h> |
26 | #include <linux/sched.h> |
27 | #include <linux/swap.h> |
28 | #include <linux/uio.h> |
29 | #include <linux/writeback.h> |
30 | |
31 | #include <asm/page.h> |
32 | #include <asm/uaccess.h> |
33 | |
34 | #include "attrib.h" |
35 | #include "bitmap.h" |
36 | #include "inode.h" |
37 | #include "debug.h" |
38 | #include "lcnalloc.h" |
39 | #include "malloc.h" |
40 | #include "mft.h" |
41 | #include "ntfs.h" |
42 | |
43 | /** |
44 | * ntfs_file_open - called when an inode is about to be opened |
45 | * @vi: inode to be opened |
46 | * @filp: file structure describing the inode |
47 | * |
48 | * Limit file size to the page cache limit on architectures where unsigned long |
49 | * is 32-bits. This is the most we can do for now without overflowing the page |
50 | * cache page index. Doing it this way means we don't run into problems because |
51 | * of existing too large files. It would be better to allow the user to read |
52 | * the beginning of the file but I doubt very much anyone is going to hit this |
53 | * check on a 32-bit architecture, so there is no point in adding the extra |
54 | * complexity required to support this. |
55 | * |
56 | * On 64-bit architectures, the check is hopefully optimized away by the |
57 | * compiler. |
58 | * |
59 | * After the check passes, just call generic_file_open() to do its work. |
60 | */ |
61 | static int ntfs_file_open(struct inode *vi, struct file *filp) |
62 | { |
63 | if (sizeof(unsigned long) < 8) { |
64 | if (i_size_read(vi) > MAX_LFS_FILESIZE) |
65 | return -EOVERFLOW; |
66 | } |
67 | return generic_file_open(vi, filp); |
68 | } |
69 | |
70 | #ifdef NTFS_RW |
71 | |
72 | /** |
73 | * ntfs_attr_extend_initialized - extend the initialized size of an attribute |
74 | * @ni: ntfs inode of the attribute to extend |
75 | * @new_init_size: requested new initialized size in bytes |
76 | * @cached_page: store any allocated but unused page here |
77 | * @lru_pvec: lru-buffering pagevec of the caller |
78 | * |
79 | * Extend the initialized size of an attribute described by the ntfs inode @ni |
80 | * to @new_init_size bytes. This involves zeroing any non-sparse space between |
81 | * the old initialized size and @new_init_size both in the page cache and on |
82 | * disk (if relevant complete pages are already uptodate in the page cache then |
83 | * these are simply marked dirty). |
84 | * |
85 | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, |
86 | * in the resident attribute case, it is tied to the initialized size and, in |
87 | * the non-resident attribute case, it may not fall below the initialized size. |
88 | * |
89 | * Note that if the attribute is resident, we do not need to touch the page |
90 | * cache at all. This is because if the page cache page is not uptodate we |
91 | * bring it uptodate later, when doing the write to the mft record since we |
92 | * then already have the page mapped. And if the page is uptodate, the |
93 | * non-initialized region will already have been zeroed when the page was |
94 | * brought uptodate and the region may in fact already have been overwritten |
95 | * with new data via mmap() based writes, so we cannot just zero it. And since |
96 | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped |
97 | * is unspecified, we choose not to do zeroing and thus we do not need to touch |
98 | * the page at all. For a more detailed explanation see ntfs_truncate() in |
99 | * fs/ntfs/inode.c. |
100 | * |
101 | * Return 0 on success and -errno on error. In the case that an error is |
102 | * encountered it is possible that the initialized size will already have been |
103 | * incremented some way towards @new_init_size but it is guaranteed that if |
104 | * this is the case, the necessary zeroing will also have happened and that all |
105 | * metadata is self-consistent. |
106 | * |
107 | * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be |
108 | * held by the caller. |
109 | */ |
110 | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size) |
111 | { |
112 | s64 old_init_size; |
113 | loff_t old_i_size; |
114 | pgoff_t index, end_index; |
115 | unsigned long flags; |
116 | struct inode *vi = VFS_I(ni); |
117 | ntfs_inode *base_ni; |
118 | MFT_RECORD *m = NULL; |
119 | ATTR_RECORD *a; |
120 | ntfs_attr_search_ctx *ctx = NULL; |
121 | struct address_space *mapping; |
122 | struct page *page = NULL; |
123 | u8 *kattr; |
124 | int err; |
125 | u32 attr_len; |
126 | |
127 | read_lock_irqsave(&ni->size_lock, flags); |
128 | old_init_size = ni->initialized_size; |
129 | old_i_size = i_size_read(vi); |
130 | BUG_ON(new_init_size > ni->allocated_size); |
131 | read_unlock_irqrestore(&ni->size_lock, flags); |
132 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " |
133 | "old_initialized_size 0x%llx, " |
134 | "new_initialized_size 0x%llx, i_size 0x%llx.", |
135 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), |
136 | (unsigned long long)old_init_size, |
137 | (unsigned long long)new_init_size, old_i_size); |
138 | if (!NInoAttr(ni)) |
139 | base_ni = ni; |
140 | else |
141 | base_ni = ni->ext.base_ntfs_ino; |
142 | /* Use goto to reduce indentation and we need the label below anyway. */ |
143 | if (NInoNonResident(ni)) |
144 | goto do_non_resident_extend; |
145 | BUG_ON(old_init_size != old_i_size); |
146 | m = map_mft_record(base_ni); |
147 | if (IS_ERR(m)) { |
148 | err = PTR_ERR(m); |
149 | m = NULL; |
150 | goto err_out; |
151 | } |
152 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
153 | if (unlikely(!ctx)) { |
154 | err = -ENOMEM; |
155 | goto err_out; |
156 | } |
157 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
158 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
159 | if (unlikely(err)) { |
160 | if (err == -ENOENT) |
161 | err = -EIO; |
162 | goto err_out; |
163 | } |
164 | m = ctx->mrec; |
165 | a = ctx->attr; |
166 | BUG_ON(a->non_resident); |
167 | /* The total length of the attribute value. */ |
168 | attr_len = le32_to_cpu(a->data.resident.value_length); |
169 | BUG_ON(old_i_size != (loff_t)attr_len); |
170 | /* |
171 | * Do the zeroing in the mft record and update the attribute size in |
172 | * the mft record. |
173 | */ |
174 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); |
175 | memset(kattr + attr_len, 0, new_init_size - attr_len); |
176 | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); |
177 | /* Finally, update the sizes in the vfs and ntfs inodes. */ |
178 | write_lock_irqsave(&ni->size_lock, flags); |
179 | i_size_write(vi, new_init_size); |
180 | ni->initialized_size = new_init_size; |
181 | write_unlock_irqrestore(&ni->size_lock, flags); |
182 | goto done; |
183 | do_non_resident_extend: |
184 | /* |
185 | * If the new initialized size @new_init_size exceeds the current file |
186 | * size (vfs inode->i_size), we need to extend the file size to the |
187 | * new initialized size. |
188 | */ |
189 | if (new_init_size > old_i_size) { |
190 | m = map_mft_record(base_ni); |
191 | if (IS_ERR(m)) { |
192 | err = PTR_ERR(m); |
193 | m = NULL; |
194 | goto err_out; |
195 | } |
196 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
197 | if (unlikely(!ctx)) { |
198 | err = -ENOMEM; |
199 | goto err_out; |
200 | } |
201 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
202 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
203 | if (unlikely(err)) { |
204 | if (err == -ENOENT) |
205 | err = -EIO; |
206 | goto err_out; |
207 | } |
208 | m = ctx->mrec; |
209 | a = ctx->attr; |
210 | BUG_ON(!a->non_resident); |
211 | BUG_ON(old_i_size != (loff_t) |
212 | sle64_to_cpu(a->data.non_resident.data_size)); |
213 | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); |
214 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
215 | mark_mft_record_dirty(ctx->ntfs_ino); |
216 | /* Update the file size in the vfs inode. */ |
217 | i_size_write(vi, new_init_size); |
218 | ntfs_attr_put_search_ctx(ctx); |
219 | ctx = NULL; |
220 | unmap_mft_record(base_ni); |
221 | m = NULL; |
222 | } |
223 | mapping = vi->i_mapping; |
224 | index = old_init_size >> PAGE_CACHE_SHIFT; |
225 | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
226 | do { |
227 | /* |
228 | * Read the page. If the page is not present, this will zero |
229 | * the uninitialized regions for us. |
230 | */ |
231 | page = read_mapping_page(mapping, index, NULL); |
232 | if (IS_ERR(page)) { |
233 | err = PTR_ERR(page); |
234 | goto init_err_out; |
235 | } |
236 | if (unlikely(PageError(page))) { |
237 | page_cache_release(page); |
238 | err = -EIO; |
239 | goto init_err_out; |
240 | } |
241 | /* |
242 | * Update the initialized size in the ntfs inode. This is |
243 | * enough to make ntfs_writepage() work. |
244 | */ |
245 | write_lock_irqsave(&ni->size_lock, flags); |
246 | ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; |
247 | if (ni->initialized_size > new_init_size) |
248 | ni->initialized_size = new_init_size; |
249 | write_unlock_irqrestore(&ni->size_lock, flags); |
250 | /* Set the page dirty so it gets written out. */ |
251 | set_page_dirty(page); |
252 | page_cache_release(page); |
253 | /* |
254 | * Play nice with the vm and the rest of the system. This is |
255 | * very much needed as we can potentially be modifying the |
256 | * initialised size from a very small value to a really huge |
257 | * value, e.g. |
258 | * f = open(somefile, O_TRUNC); |
259 | * truncate(f, 10GiB); |
260 | * seek(f, 10GiB); |
261 | * write(f, 1); |
262 | * And this would mean we would be marking dirty hundreds of |
263 | * thousands of pages or as in the above example more than |
264 | * two and a half million pages! |
265 | * |
266 | * TODO: For sparse pages could optimize this workload by using |
267 | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This |
268 | * would be set in readpage for sparse pages and here we would |
269 | * not need to mark dirty any pages which have this bit set. |
270 | * The only caveat is that we have to clear the bit everywhere |
271 | * where we allocate any clusters that lie in the page or that |
272 | * contain the page. |
273 | * |
274 | * TODO: An even greater optimization would be for us to only |
275 | * call readpage() on pages which are not in sparse regions as |
276 | * determined from the runlist. This would greatly reduce the |
277 | * number of pages we read and make dirty in the case of sparse |
278 | * files. |
279 | */ |
280 | balance_dirty_pages_ratelimited(mapping); |
281 | cond_resched(); |
282 | } while (++index < end_index); |
283 | read_lock_irqsave(&ni->size_lock, flags); |
284 | BUG_ON(ni->initialized_size != new_init_size); |
285 | read_unlock_irqrestore(&ni->size_lock, flags); |
286 | /* Now bring in sync the initialized_size in the mft record. */ |
287 | m = map_mft_record(base_ni); |
288 | if (IS_ERR(m)) { |
289 | err = PTR_ERR(m); |
290 | m = NULL; |
291 | goto init_err_out; |
292 | } |
293 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
294 | if (unlikely(!ctx)) { |
295 | err = -ENOMEM; |
296 | goto init_err_out; |
297 | } |
298 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
299 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
300 | if (unlikely(err)) { |
301 | if (err == -ENOENT) |
302 | err = -EIO; |
303 | goto init_err_out; |
304 | } |
305 | m = ctx->mrec; |
306 | a = ctx->attr; |
307 | BUG_ON(!a->non_resident); |
308 | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); |
309 | done: |
310 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
311 | mark_mft_record_dirty(ctx->ntfs_ino); |
312 | if (ctx) |
313 | ntfs_attr_put_search_ctx(ctx); |
314 | if (m) |
315 | unmap_mft_record(base_ni); |
316 | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", |
317 | (unsigned long long)new_init_size, i_size_read(vi)); |
318 | return 0; |
319 | init_err_out: |
320 | write_lock_irqsave(&ni->size_lock, flags); |
321 | ni->initialized_size = old_init_size; |
322 | write_unlock_irqrestore(&ni->size_lock, flags); |
323 | err_out: |
324 | if (ctx) |
325 | ntfs_attr_put_search_ctx(ctx); |
326 | if (m) |
327 | unmap_mft_record(base_ni); |
328 | ntfs_debug("Failed. Returning error code %i.", err); |
329 | return err; |
330 | } |
331 | |
332 | /** |
333 | * ntfs_fault_in_pages_readable - |
334 | * |
335 | * Fault a number of userspace pages into pagetables. |
336 | * |
337 | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes |
338 | * with more than two userspace pages as well as handling the single page case |
339 | * elegantly. |
340 | * |
341 | * If you find this difficult to understand, then think of the while loop being |
342 | * the following code, except that we do without the integer variable ret: |
343 | * |
344 | * do { |
345 | * ret = __get_user(c, uaddr); |
346 | * uaddr += PAGE_SIZE; |
347 | * } while (!ret && uaddr < end); |
348 | * |
349 | * Note, the final __get_user() may well run out-of-bounds of the user buffer, |
350 | * but _not_ out-of-bounds of the page the user buffer belongs to, and since |
351 | * this is only a read and not a write, and since it is still in the same page, |
352 | * it should not matter and this makes the code much simpler. |
353 | */ |
354 | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, |
355 | int bytes) |
356 | { |
357 | const char __user *end; |
358 | volatile char c; |
359 | |
360 | /* Set @end to the first byte outside the last page we care about. */ |
361 | end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); |
362 | |
363 | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) |
364 | ; |
365 | } |
366 | |
367 | /** |
368 | * ntfs_fault_in_pages_readable_iovec - |
369 | * |
370 | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. |
371 | */ |
372 | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, |
373 | size_t iov_ofs, int bytes) |
374 | { |
375 | do { |
376 | const char __user *buf; |
377 | unsigned len; |
378 | |
379 | buf = iov->iov_base + iov_ofs; |
380 | len = iov->iov_len - iov_ofs; |
381 | if (len > bytes) |
382 | len = bytes; |
383 | ntfs_fault_in_pages_readable(buf, len); |
384 | bytes -= len; |
385 | iov++; |
386 | iov_ofs = 0; |
387 | } while (bytes); |
388 | } |
389 | |
390 | /** |
391 | * __ntfs_grab_cache_pages - obtain a number of locked pages |
392 | * @mapping: address space mapping from which to obtain page cache pages |
393 | * @index: starting index in @mapping at which to begin obtaining pages |
394 | * @nr_pages: number of page cache pages to obtain |
395 | * @pages: array of pages in which to return the obtained page cache pages |
396 | * @cached_page: allocated but as yet unused page |
397 | * @lru_pvec: lru-buffering pagevec of caller |
398 | * |
399 | * Obtain @nr_pages locked page cache pages from the mapping @mapping and |
400 | * starting at index @index. |
401 | * |
402 | * If a page is newly created, add it to lru list |
403 | * |
404 | * Note, the page locks are obtained in ascending page index order. |
405 | */ |
406 | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, |
407 | pgoff_t index, const unsigned nr_pages, struct page **pages, |
408 | struct page **cached_page) |
409 | { |
410 | int err, nr; |
411 | |
412 | BUG_ON(!nr_pages); |
413 | err = nr = 0; |
414 | do { |
415 | pages[nr] = find_lock_page(mapping, index); |
416 | if (!pages[nr]) { |
417 | if (!*cached_page) { |
418 | *cached_page = page_cache_alloc(mapping); |
419 | if (unlikely(!*cached_page)) { |
420 | err = -ENOMEM; |
421 | goto err_out; |
422 | } |
423 | } |
424 | err = add_to_page_cache_lru(*cached_page, mapping, index, |
425 | GFP_KERNEL); |
426 | if (unlikely(err)) { |
427 | if (err == -EEXIST) |
428 | continue; |
429 | goto err_out; |
430 | } |
431 | pages[nr] = *cached_page; |
432 | *cached_page = NULL; |
433 | } |
434 | index++; |
435 | nr++; |
436 | } while (nr < nr_pages); |
437 | out: |
438 | return err; |
439 | err_out: |
440 | while (nr > 0) { |
441 | unlock_page(pages[--nr]); |
442 | page_cache_release(pages[nr]); |
443 | } |
444 | goto out; |
445 | } |
446 | |
447 | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) |
448 | { |
449 | lock_buffer(bh); |
450 | get_bh(bh); |
451 | bh->b_end_io = end_buffer_read_sync; |
452 | return submit_bh(READ, bh); |
453 | } |
454 | |
455 | /** |
456 | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data |
457 | * @pages: array of destination pages |
458 | * @nr_pages: number of pages in @pages |
459 | * @pos: byte position in file at which the write begins |
460 | * @bytes: number of bytes to be written |
461 | * |
462 | * This is called for non-resident attributes from ntfs_file_buffered_write() |
463 | * with i_mutex held on the inode (@pages[0]->mapping->host). There are |
464 | * @nr_pages pages in @pages which are locked but not kmap()ped. The source |
465 | * data has not yet been copied into the @pages. |
466 | * |
467 | * Need to fill any holes with actual clusters, allocate buffers if necessary, |
468 | * ensure all the buffers are mapped, and bring uptodate any buffers that are |
469 | * only partially being written to. |
470 | * |
471 | * If @nr_pages is greater than one, we are guaranteed that the cluster size is |
472 | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside |
473 | * the same cluster and that they are the entirety of that cluster, and that |
474 | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. |
475 | * |
476 | * i_size is not to be modified yet. |
477 | * |
478 | * Return 0 on success or -errno on error. |
479 | */ |
480 | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, |
481 | unsigned nr_pages, s64 pos, size_t bytes) |
482 | { |
483 | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; |
484 | LCN lcn; |
485 | s64 bh_pos, vcn_len, end, initialized_size; |
486 | sector_t lcn_block; |
487 | struct page *page; |
488 | struct inode *vi; |
489 | ntfs_inode *ni, *base_ni = NULL; |
490 | ntfs_volume *vol; |
491 | runlist_element *rl, *rl2; |
492 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; |
493 | ntfs_attr_search_ctx *ctx = NULL; |
494 | MFT_RECORD *m = NULL; |
495 | ATTR_RECORD *a = NULL; |
496 | unsigned long flags; |
497 | u32 attr_rec_len = 0; |
498 | unsigned blocksize, u; |
499 | int err, mp_size; |
500 | bool rl_write_locked, was_hole, is_retry; |
501 | unsigned char blocksize_bits; |
502 | struct { |
503 | u8 runlist_merged:1; |
504 | u8 mft_attr_mapped:1; |
505 | u8 mp_rebuilt:1; |
506 | u8 attr_switched:1; |
507 | } status = { 0, 0, 0, 0 }; |
508 | |
509 | BUG_ON(!nr_pages); |
510 | BUG_ON(!pages); |
511 | BUG_ON(!*pages); |
512 | vi = pages[0]->mapping->host; |
513 | ni = NTFS_I(vi); |
514 | vol = ni->vol; |
515 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " |
516 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", |
517 | vi->i_ino, ni->type, pages[0]->index, nr_pages, |
518 | (long long)pos, bytes); |
519 | blocksize = vol->sb->s_blocksize; |
520 | blocksize_bits = vol->sb->s_blocksize_bits; |
521 | u = 0; |
522 | do { |
523 | page = pages[u]; |
524 | BUG_ON(!page); |
525 | /* |
526 | * create_empty_buffers() will create uptodate/dirty buffers if |
527 | * the page is uptodate/dirty. |
528 | */ |
529 | if (!page_has_buffers(page)) { |
530 | create_empty_buffers(page, blocksize, 0); |
531 | if (unlikely(!page_has_buffers(page))) |
532 | return -ENOMEM; |
533 | } |
534 | } while (++u < nr_pages); |
535 | rl_write_locked = false; |
536 | rl = NULL; |
537 | err = 0; |
538 | vcn = lcn = -1; |
539 | vcn_len = 0; |
540 | lcn_block = -1; |
541 | was_hole = false; |
542 | cpos = pos >> vol->cluster_size_bits; |
543 | end = pos + bytes; |
544 | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; |
545 | /* |
546 | * Loop over each page and for each page over each buffer. Use goto to |
547 | * reduce indentation. |
548 | */ |
549 | u = 0; |
550 | do_next_page: |
551 | page = pages[u]; |
552 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; |
553 | bh = head = page_buffers(page); |
554 | do { |
555 | VCN cdelta; |
556 | s64 bh_end; |
557 | unsigned bh_cofs; |
558 | |
559 | /* Clear buffer_new on all buffers to reinitialise state. */ |
560 | if (buffer_new(bh)) |
561 | clear_buffer_new(bh); |
562 | bh_end = bh_pos + blocksize; |
563 | bh_cpos = bh_pos >> vol->cluster_size_bits; |
564 | bh_cofs = bh_pos & vol->cluster_size_mask; |
565 | if (buffer_mapped(bh)) { |
566 | /* |
567 | * The buffer is already mapped. If it is uptodate, |
568 | * ignore it. |
569 | */ |
570 | if (buffer_uptodate(bh)) |
571 | continue; |
572 | /* |
573 | * The buffer is not uptodate. If the page is uptodate |
574 | * set the buffer uptodate and otherwise ignore it. |
575 | */ |
576 | if (PageUptodate(page)) { |
577 | set_buffer_uptodate(bh); |
578 | continue; |
579 | } |
580 | /* |
581 | * Neither the page nor the buffer are uptodate. If |
582 | * the buffer is only partially being written to, we |
583 | * need to read it in before the write, i.e. now. |
584 | */ |
585 | if ((bh_pos < pos && bh_end > pos) || |
586 | (bh_pos < end && bh_end > end)) { |
587 | /* |
588 | * If the buffer is fully or partially within |
589 | * the initialized size, do an actual read. |
590 | * Otherwise, simply zero the buffer. |
591 | */ |
592 | read_lock_irqsave(&ni->size_lock, flags); |
593 | initialized_size = ni->initialized_size; |
594 | read_unlock_irqrestore(&ni->size_lock, flags); |
595 | if (bh_pos < initialized_size) { |
596 | ntfs_submit_bh_for_read(bh); |
597 | *wait_bh++ = bh; |
598 | } else { |
599 | zero_user(page, bh_offset(bh), |
600 | blocksize); |
601 | set_buffer_uptodate(bh); |
602 | } |
603 | } |
604 | continue; |
605 | } |
606 | /* Unmapped buffer. Need to map it. */ |
607 | bh->b_bdev = vol->sb->s_bdev; |
608 | /* |
609 | * If the current buffer is in the same clusters as the map |
610 | * cache, there is no need to check the runlist again. The |
611 | * map cache is made up of @vcn, which is the first cached file |
612 | * cluster, @vcn_len which is the number of cached file |
613 | * clusters, @lcn is the device cluster corresponding to @vcn, |
614 | * and @lcn_block is the block number corresponding to @lcn. |
615 | */ |
616 | cdelta = bh_cpos - vcn; |
617 | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { |
618 | map_buffer_cached: |
619 | BUG_ON(lcn < 0); |
620 | bh->b_blocknr = lcn_block + |
621 | (cdelta << (vol->cluster_size_bits - |
622 | blocksize_bits)) + |
623 | (bh_cofs >> blocksize_bits); |
624 | set_buffer_mapped(bh); |
625 | /* |
626 | * If the page is uptodate so is the buffer. If the |
627 | * buffer is fully outside the write, we ignore it if |
628 | * it was already allocated and we mark it dirty so it |
629 | * gets written out if we allocated it. On the other |
630 | * hand, if we allocated the buffer but we are not |
631 | * marking it dirty we set buffer_new so we can do |
632 | * error recovery. |
633 | */ |
634 | if (PageUptodate(page)) { |
635 | if (!buffer_uptodate(bh)) |
636 | set_buffer_uptodate(bh); |
637 | if (unlikely(was_hole)) { |
638 | /* We allocated the buffer. */ |
639 | unmap_underlying_metadata(bh->b_bdev, |
640 | bh->b_blocknr); |
641 | if (bh_end <= pos || bh_pos >= end) |
642 | mark_buffer_dirty(bh); |
643 | else |
644 | set_buffer_new(bh); |
645 | } |
646 | continue; |
647 | } |
648 | /* Page is _not_ uptodate. */ |
649 | if (likely(!was_hole)) { |
650 | /* |
651 | * Buffer was already allocated. If it is not |
652 | * uptodate and is only partially being written |
653 | * to, we need to read it in before the write, |
654 | * i.e. now. |
655 | */ |
656 | if (!buffer_uptodate(bh) && bh_pos < end && |
657 | bh_end > pos && |
658 | (bh_pos < pos || |
659 | bh_end > end)) { |
660 | /* |
661 | * If the buffer is fully or partially |
662 | * within the initialized size, do an |
663 | * actual read. Otherwise, simply zero |
664 | * the buffer. |
665 | */ |
666 | read_lock_irqsave(&ni->size_lock, |
667 | flags); |
668 | initialized_size = ni->initialized_size; |
669 | read_unlock_irqrestore(&ni->size_lock, |
670 | flags); |
671 | if (bh_pos < initialized_size) { |
672 | ntfs_submit_bh_for_read(bh); |
673 | *wait_bh++ = bh; |
674 | } else { |
675 | zero_user(page, bh_offset(bh), |
676 | blocksize); |
677 | set_buffer_uptodate(bh); |
678 | } |
679 | } |
680 | continue; |
681 | } |
682 | /* We allocated the buffer. */ |
683 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); |
684 | /* |
685 | * If the buffer is fully outside the write, zero it, |
686 | * set it uptodate, and mark it dirty so it gets |
687 | * written out. If it is partially being written to, |
688 | * zero region surrounding the write but leave it to |
689 | * commit write to do anything else. Finally, if the |
690 | * buffer is fully being overwritten, do nothing. |
691 | */ |
692 | if (bh_end <= pos || bh_pos >= end) { |
693 | if (!buffer_uptodate(bh)) { |
694 | zero_user(page, bh_offset(bh), |
695 | blocksize); |
696 | set_buffer_uptodate(bh); |
697 | } |
698 | mark_buffer_dirty(bh); |
699 | continue; |
700 | } |
701 | set_buffer_new(bh); |
702 | if (!buffer_uptodate(bh) && |
703 | (bh_pos < pos || bh_end > end)) { |
704 | u8 *kaddr; |
705 | unsigned pofs; |
706 | |
707 | kaddr = kmap_atomic(page, KM_USER0); |
708 | if (bh_pos < pos) { |
709 | pofs = bh_pos & ~PAGE_CACHE_MASK; |
710 | memset(kaddr + pofs, 0, pos - bh_pos); |
711 | } |
712 | if (bh_end > end) { |
713 | pofs = end & ~PAGE_CACHE_MASK; |
714 | memset(kaddr + pofs, 0, bh_end - end); |
715 | } |
716 | kunmap_atomic(kaddr, KM_USER0); |
717 | flush_dcache_page(page); |
718 | } |
719 | continue; |
720 | } |
721 | /* |
722 | * Slow path: this is the first buffer in the cluster. If it |
723 | * is outside allocated size and is not uptodate, zero it and |
724 | * set it uptodate. |
725 | */ |
726 | read_lock_irqsave(&ni->size_lock, flags); |
727 | initialized_size = ni->allocated_size; |
728 | read_unlock_irqrestore(&ni->size_lock, flags); |
729 | if (bh_pos > initialized_size) { |
730 | if (PageUptodate(page)) { |
731 | if (!buffer_uptodate(bh)) |
732 | set_buffer_uptodate(bh); |
733 | } else if (!buffer_uptodate(bh)) { |
734 | zero_user(page, bh_offset(bh), blocksize); |
735 | set_buffer_uptodate(bh); |
736 | } |
737 | continue; |
738 | } |
739 | is_retry = false; |
740 | if (!rl) { |
741 | down_read(&ni->runlist.lock); |
742 | retry_remap: |
743 | rl = ni->runlist.rl; |
744 | } |
745 | if (likely(rl != NULL)) { |
746 | /* Seek to element containing target cluster. */ |
747 | while (rl->length && rl[1].vcn <= bh_cpos) |
748 | rl++; |
749 | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); |
750 | if (likely(lcn >= 0)) { |
751 | /* |
752 | * Successful remap, setup the map cache and |
753 | * use that to deal with the buffer. |
754 | */ |
755 | was_hole = false; |
756 | vcn = bh_cpos; |
757 | vcn_len = rl[1].vcn - vcn; |
758 | lcn_block = lcn << (vol->cluster_size_bits - |
759 | blocksize_bits); |
760 | cdelta = 0; |
761 | /* |
762 | * If the number of remaining clusters touched |
763 | * by the write is smaller or equal to the |
764 | * number of cached clusters, unlock the |
765 | * runlist as the map cache will be used from |
766 | * now on. |
767 | */ |
768 | if (likely(vcn + vcn_len >= cend)) { |
769 | if (rl_write_locked) { |
770 | up_write(&ni->runlist.lock); |
771 | rl_write_locked = false; |
772 | } else |
773 | up_read(&ni->runlist.lock); |
774 | rl = NULL; |
775 | } |
776 | goto map_buffer_cached; |
777 | } |
778 | } else |
779 | lcn = LCN_RL_NOT_MAPPED; |
780 | /* |
781 | * If it is not a hole and not out of bounds, the runlist is |
782 | * probably unmapped so try to map it now. |
783 | */ |
784 | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { |
785 | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { |
786 | /* Attempt to map runlist. */ |
787 | if (!rl_write_locked) { |
788 | /* |
789 | * We need the runlist locked for |
790 | * writing, so if it is locked for |
791 | * reading relock it now and retry in |
792 | * case it changed whilst we dropped |
793 | * the lock. |
794 | */ |
795 | up_read(&ni->runlist.lock); |
796 | down_write(&ni->runlist.lock); |
797 | rl_write_locked = true; |
798 | goto retry_remap; |
799 | } |
800 | err = ntfs_map_runlist_nolock(ni, bh_cpos, |
801 | NULL); |
802 | if (likely(!err)) { |
803 | is_retry = true; |
804 | goto retry_remap; |
805 | } |
806 | /* |
807 | * If @vcn is out of bounds, pretend @lcn is |
808 | * LCN_ENOENT. As long as the buffer is out |
809 | * of bounds this will work fine. |
810 | */ |
811 | if (err == -ENOENT) { |
812 | lcn = LCN_ENOENT; |
813 | err = 0; |
814 | goto rl_not_mapped_enoent; |
815 | } |
816 | } else |
817 | err = -EIO; |
818 | /* Failed to map the buffer, even after retrying. */ |
819 | bh->b_blocknr = -1; |
820 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " |
821 | "attribute type 0x%x, vcn 0x%llx, " |
822 | "vcn offset 0x%x, because its " |
823 | "location on disk could not be " |
824 | "determined%s (error code %i).", |
825 | ni->mft_no, ni->type, |
826 | (unsigned long long)bh_cpos, |
827 | (unsigned)bh_pos & |
828 | vol->cluster_size_mask, |
829 | is_retry ? " even after retrying" : "", |
830 | err); |
831 | break; |
832 | } |
833 | rl_not_mapped_enoent: |
834 | /* |
835 | * The buffer is in a hole or out of bounds. We need to fill |
836 | * the hole, unless the buffer is in a cluster which is not |
837 | * touched by the write, in which case we just leave the buffer |
838 | * unmapped. This can only happen when the cluster size is |
839 | * less than the page cache size. |
840 | */ |
841 | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { |
842 | bh_cend = (bh_end + vol->cluster_size - 1) >> |
843 | vol->cluster_size_bits; |
844 | if ((bh_cend <= cpos || bh_cpos >= cend)) { |
845 | bh->b_blocknr = -1; |
846 | /* |
847 | * If the buffer is uptodate we skip it. If it |
848 | * is not but the page is uptodate, we can set |
849 | * the buffer uptodate. If the page is not |
850 | * uptodate, we can clear the buffer and set it |
851 | * uptodate. Whether this is worthwhile is |
852 | * debatable and this could be removed. |
853 | */ |
854 | if (PageUptodate(page)) { |
855 | if (!buffer_uptodate(bh)) |
856 | set_buffer_uptodate(bh); |
857 | } else if (!buffer_uptodate(bh)) { |
858 | zero_user(page, bh_offset(bh), |
859 | blocksize); |
860 | set_buffer_uptodate(bh); |
861 | } |
862 | continue; |
863 | } |
864 | } |
865 | /* |
866 | * Out of bounds buffer is invalid if it was not really out of |
867 | * bounds. |
868 | */ |
869 | BUG_ON(lcn != LCN_HOLE); |
870 | /* |
871 | * We need the runlist locked for writing, so if it is locked |
872 | * for reading relock it now and retry in case it changed |
873 | * whilst we dropped the lock. |
874 | */ |
875 | BUG_ON(!rl); |
876 | if (!rl_write_locked) { |
877 | up_read(&ni->runlist.lock); |
878 | down_write(&ni->runlist.lock); |
879 | rl_write_locked = true; |
880 | goto retry_remap; |
881 | } |
882 | /* Find the previous last allocated cluster. */ |
883 | BUG_ON(rl->lcn != LCN_HOLE); |
884 | lcn = -1; |
885 | rl2 = rl; |
886 | while (--rl2 >= ni->runlist.rl) { |
887 | if (rl2->lcn >= 0) { |
888 | lcn = rl2->lcn + rl2->length; |
889 | break; |
890 | } |
891 | } |
892 | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, |
893 | false); |
894 | if (IS_ERR(rl2)) { |
895 | err = PTR_ERR(rl2); |
896 | ntfs_debug("Failed to allocate cluster, error code %i.", |
897 | err); |
898 | break; |
899 | } |
900 | lcn = rl2->lcn; |
901 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); |
902 | if (IS_ERR(rl)) { |
903 | err = PTR_ERR(rl); |
904 | if (err != -ENOMEM) |
905 | err = -EIO; |
906 | if (ntfs_cluster_free_from_rl(vol, rl2)) { |
907 | ntfs_error(vol->sb, "Failed to release " |
908 | "allocated cluster in error " |
909 | "code path. Run chkdsk to " |
910 | "recover the lost cluster."); |
911 | NVolSetErrors(vol); |
912 | } |
913 | ntfs_free(rl2); |
914 | break; |
915 | } |
916 | ni->runlist.rl = rl; |
917 | status.runlist_merged = 1; |
918 | ntfs_debug("Allocated cluster, lcn 0x%llx.", |
919 | (unsigned long long)lcn); |
920 | /* Map and lock the mft record and get the attribute record. */ |
921 | if (!NInoAttr(ni)) |
922 | base_ni = ni; |
923 | else |
924 | base_ni = ni->ext.base_ntfs_ino; |
925 | m = map_mft_record(base_ni); |
926 | if (IS_ERR(m)) { |
927 | err = PTR_ERR(m); |
928 | break; |
929 | } |
930 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
931 | if (unlikely(!ctx)) { |
932 | err = -ENOMEM; |
933 | unmap_mft_record(base_ni); |
934 | break; |
935 | } |
936 | status.mft_attr_mapped = 1; |
937 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
938 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); |
939 | if (unlikely(err)) { |
940 | if (err == -ENOENT) |
941 | err = -EIO; |
942 | break; |
943 | } |
944 | m = ctx->mrec; |
945 | a = ctx->attr; |
946 | /* |
947 | * Find the runlist element with which the attribute extent |
948 | * starts. Note, we cannot use the _attr_ version because we |
949 | * have mapped the mft record. That is ok because we know the |
950 | * runlist fragment must be mapped already to have ever gotten |
951 | * here, so we can just use the _rl_ version. |
952 | */ |
953 | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); |
954 | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); |
955 | BUG_ON(!rl2); |
956 | BUG_ON(!rl2->length); |
957 | BUG_ON(rl2->lcn < LCN_HOLE); |
958 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
959 | /* |
960 | * If @highest_vcn is zero, calculate the real highest_vcn |
961 | * (which can really be zero). |
962 | */ |
963 | if (!highest_vcn) |
964 | highest_vcn = (sle64_to_cpu( |
965 | a->data.non_resident.allocated_size) >> |
966 | vol->cluster_size_bits) - 1; |
967 | /* |
968 | * Determine the size of the mapping pairs array for the new |
969 | * extent, i.e. the old extent with the hole filled. |
970 | */ |
971 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, |
972 | highest_vcn); |
973 | if (unlikely(mp_size <= 0)) { |
974 | if (!(err = mp_size)) |
975 | err = -EIO; |
976 | ntfs_debug("Failed to get size for mapping pairs " |
977 | "array, error code %i.", err); |
978 | break; |
979 | } |
980 | /* |
981 | * Resize the attribute record to fit the new mapping pairs |
982 | * array. |
983 | */ |
984 | attr_rec_len = le32_to_cpu(a->length); |
985 | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( |
986 | a->data.non_resident.mapping_pairs_offset)); |
987 | if (unlikely(err)) { |
988 | BUG_ON(err != -ENOSPC); |
989 | // TODO: Deal with this by using the current attribute |
990 | // and fill it with as much of the mapping pairs |
991 | // array as possible. Then loop over each attribute |
992 | // extent rewriting the mapping pairs arrays as we go |
993 | // along and if when we reach the end we have not |
994 | // enough space, try to resize the last attribute |
995 | // extent and if even that fails, add a new attribute |
996 | // extent. |
997 | // We could also try to resize at each step in the hope |
998 | // that we will not need to rewrite every single extent. |
999 | // Note, we may need to decompress some extents to fill |
1000 | // the runlist as we are walking the extents... |
1001 | ntfs_error(vol->sb, "Not enough space in the mft " |
1002 | "record for the extended attribute " |
1003 | "record. This case is not " |
1004 | "implemented yet."); |
1005 | err = -EOPNOTSUPP; |
1006 | break ; |
1007 | } |
1008 | status.mp_rebuilt = 1; |
1009 | /* |
1010 | * Generate the mapping pairs array directly into the attribute |
1011 | * record. |
1012 | */ |
1013 | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
1014 | a->data.non_resident.mapping_pairs_offset), |
1015 | mp_size, rl2, vcn, highest_vcn, NULL); |
1016 | if (unlikely(err)) { |
1017 | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " |
1018 | "attribute type 0x%x, because building " |
1019 | "the mapping pairs failed with error " |
1020 | "code %i.", vi->i_ino, |
1021 | (unsigned)le32_to_cpu(ni->type), err); |
1022 | err = -EIO; |
1023 | break; |
1024 | } |
1025 | /* Update the highest_vcn but only if it was not set. */ |
1026 | if (unlikely(!a->data.non_resident.highest_vcn)) |
1027 | a->data.non_resident.highest_vcn = |
1028 | cpu_to_sle64(highest_vcn); |
1029 | /* |
1030 | * If the attribute is sparse/compressed, update the compressed |
1031 | * size in the ntfs_inode structure and the attribute record. |
1032 | */ |
1033 | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { |
1034 | /* |
1035 | * If we are not in the first attribute extent, switch |
1036 | * to it, but first ensure the changes will make it to |
1037 | * disk later. |
1038 | */ |
1039 | if (a->data.non_resident.lowest_vcn) { |
1040 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1041 | mark_mft_record_dirty(ctx->ntfs_ino); |
1042 | ntfs_attr_reinit_search_ctx(ctx); |
1043 | err = ntfs_attr_lookup(ni->type, ni->name, |
1044 | ni->name_len, CASE_SENSITIVE, |
1045 | 0, NULL, 0, ctx); |
1046 | if (unlikely(err)) { |
1047 | status.attr_switched = 1; |
1048 | break; |
1049 | } |
1050 | /* @m is not used any more so do not set it. */ |
1051 | a = ctx->attr; |
1052 | } |
1053 | write_lock_irqsave(&ni->size_lock, flags); |
1054 | ni->itype.compressed.size += vol->cluster_size; |
1055 | a->data.non_resident.compressed_size = |
1056 | cpu_to_sle64(ni->itype.compressed.size); |
1057 | write_unlock_irqrestore(&ni->size_lock, flags); |
1058 | } |
1059 | /* Ensure the changes make it to disk. */ |
1060 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1061 | mark_mft_record_dirty(ctx->ntfs_ino); |
1062 | ntfs_attr_put_search_ctx(ctx); |
1063 | unmap_mft_record(base_ni); |
1064 | /* Successfully filled the hole. */ |
1065 | status.runlist_merged = 0; |
1066 | status.mft_attr_mapped = 0; |
1067 | status.mp_rebuilt = 0; |
1068 | /* Setup the map cache and use that to deal with the buffer. */ |
1069 | was_hole = true; |
1070 | vcn = bh_cpos; |
1071 | vcn_len = 1; |
1072 | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); |
1073 | cdelta = 0; |
1074 | /* |
1075 | * If the number of remaining clusters in the @pages is smaller |
1076 | * or equal to the number of cached clusters, unlock the |
1077 | * runlist as the map cache will be used from now on. |
1078 | */ |
1079 | if (likely(vcn + vcn_len >= cend)) { |
1080 | up_write(&ni->runlist.lock); |
1081 | rl_write_locked = false; |
1082 | rl = NULL; |
1083 | } |
1084 | goto map_buffer_cached; |
1085 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); |
1086 | /* If there are no errors, do the next page. */ |
1087 | if (likely(!err && ++u < nr_pages)) |
1088 | goto do_next_page; |
1089 | /* If there are no errors, release the runlist lock if we took it. */ |
1090 | if (likely(!err)) { |
1091 | if (unlikely(rl_write_locked)) { |
1092 | up_write(&ni->runlist.lock); |
1093 | rl_write_locked = false; |
1094 | } else if (unlikely(rl)) |
1095 | up_read(&ni->runlist.lock); |
1096 | rl = NULL; |
1097 | } |
1098 | /* If we issued read requests, let them complete. */ |
1099 | read_lock_irqsave(&ni->size_lock, flags); |
1100 | initialized_size = ni->initialized_size; |
1101 | read_unlock_irqrestore(&ni->size_lock, flags); |
1102 | while (wait_bh > wait) { |
1103 | bh = *--wait_bh; |
1104 | wait_on_buffer(bh); |
1105 | if (likely(buffer_uptodate(bh))) { |
1106 | page = bh->b_page; |
1107 | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + |
1108 | bh_offset(bh); |
1109 | /* |
1110 | * If the buffer overflows the initialized size, need |
1111 | * to zero the overflowing region. |
1112 | */ |
1113 | if (unlikely(bh_pos + blocksize > initialized_size)) { |
1114 | int ofs = 0; |
1115 | |
1116 | if (likely(bh_pos < initialized_size)) |
1117 | ofs = initialized_size - bh_pos; |
1118 | zero_user_segment(page, bh_offset(bh) + ofs, |
1119 | blocksize); |
1120 | } |
1121 | } else /* if (unlikely(!buffer_uptodate(bh))) */ |
1122 | err = -EIO; |
1123 | } |
1124 | if (likely(!err)) { |
1125 | /* Clear buffer_new on all buffers. */ |
1126 | u = 0; |
1127 | do { |
1128 | bh = head = page_buffers(pages[u]); |
1129 | do { |
1130 | if (buffer_new(bh)) |
1131 | clear_buffer_new(bh); |
1132 | } while ((bh = bh->b_this_page) != head); |
1133 | } while (++u < nr_pages); |
1134 | ntfs_debug("Done."); |
1135 | return err; |
1136 | } |
1137 | if (status.attr_switched) { |
1138 | /* Get back to the attribute extent we modified. */ |
1139 | ntfs_attr_reinit_search_ctx(ctx); |
1140 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
1141 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { |
1142 | ntfs_error(vol->sb, "Failed to find required " |
1143 | "attribute extent of attribute in " |
1144 | "error code path. Run chkdsk to " |
1145 | "recover."); |
1146 | write_lock_irqsave(&ni->size_lock, flags); |
1147 | ni->itype.compressed.size += vol->cluster_size; |
1148 | write_unlock_irqrestore(&ni->size_lock, flags); |
1149 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1150 | mark_mft_record_dirty(ctx->ntfs_ino); |
1151 | /* |
1152 | * The only thing that is now wrong is the compressed |
1153 | * size of the base attribute extent which chkdsk |
1154 | * should be able to fix. |
1155 | */ |
1156 | NVolSetErrors(vol); |
1157 | } else { |
1158 | m = ctx->mrec; |
1159 | a = ctx->attr; |
1160 | status.attr_switched = 0; |
1161 | } |
1162 | } |
1163 | /* |
1164 | * If the runlist has been modified, need to restore it by punching a |
1165 | * hole into it and we then need to deallocate the on-disk cluster as |
1166 | * well. Note, we only modify the runlist if we are able to generate a |
1167 | * new mapping pairs array, i.e. only when the mapped attribute extent |
1168 | * is not switched. |
1169 | */ |
1170 | if (status.runlist_merged && !status.attr_switched) { |
1171 | BUG_ON(!rl_write_locked); |
1172 | /* Make the file cluster we allocated sparse in the runlist. */ |
1173 | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { |
1174 | ntfs_error(vol->sb, "Failed to punch hole into " |
1175 | "attribute runlist in error code " |
1176 | "path. Run chkdsk to recover the " |
1177 | "lost cluster."); |
1178 | NVolSetErrors(vol); |
1179 | } else /* if (success) */ { |
1180 | status.runlist_merged = 0; |
1181 | /* |
1182 | * Deallocate the on-disk cluster we allocated but only |
1183 | * if we succeeded in punching its vcn out of the |
1184 | * runlist. |
1185 | */ |
1186 | down_write(&vol->lcnbmp_lock); |
1187 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { |
1188 | ntfs_error(vol->sb, "Failed to release " |
1189 | "allocated cluster in error " |
1190 | "code path. Run chkdsk to " |
1191 | "recover the lost cluster."); |
1192 | NVolSetErrors(vol); |
1193 | } |
1194 | up_write(&vol->lcnbmp_lock); |
1195 | } |
1196 | } |
1197 | /* |
1198 | * Resize the attribute record to its old size and rebuild the mapping |
1199 | * pairs array. Note, we only can do this if the runlist has been |
1200 | * restored to its old state which also implies that the mapped |
1201 | * attribute extent is not switched. |
1202 | */ |
1203 | if (status.mp_rebuilt && !status.runlist_merged) { |
1204 | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { |
1205 | ntfs_error(vol->sb, "Failed to restore attribute " |
1206 | "record in error code path. Run " |
1207 | "chkdsk to recover."); |
1208 | NVolSetErrors(vol); |
1209 | } else /* if (success) */ { |
1210 | if (ntfs_mapping_pairs_build(vol, (u8*)a + |
1211 | le16_to_cpu(a->data.non_resident. |
1212 | mapping_pairs_offset), attr_rec_len - |
1213 | le16_to_cpu(a->data.non_resident. |
1214 | mapping_pairs_offset), ni->runlist.rl, |
1215 | vcn, highest_vcn, NULL)) { |
1216 | ntfs_error(vol->sb, "Failed to restore " |
1217 | "mapping pairs array in error " |
1218 | "code path. Run chkdsk to " |
1219 | "recover."); |
1220 | NVolSetErrors(vol); |
1221 | } |
1222 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1223 | mark_mft_record_dirty(ctx->ntfs_ino); |
1224 | } |
1225 | } |
1226 | /* Release the mft record and the attribute. */ |
1227 | if (status.mft_attr_mapped) { |
1228 | ntfs_attr_put_search_ctx(ctx); |
1229 | unmap_mft_record(base_ni); |
1230 | } |
1231 | /* Release the runlist lock. */ |
1232 | if (rl_write_locked) |
1233 | up_write(&ni->runlist.lock); |
1234 | else if (rl) |
1235 | up_read(&ni->runlist.lock); |
1236 | /* |
1237 | * Zero out any newly allocated blocks to avoid exposing stale data. |
1238 | * If BH_New is set, we know that the block was newly allocated above |
1239 | * and that it has not been fully zeroed and marked dirty yet. |
1240 | */ |
1241 | nr_pages = u; |
1242 | u = 0; |
1243 | end = bh_cpos << vol->cluster_size_bits; |
1244 | do { |
1245 | page = pages[u]; |
1246 | bh = head = page_buffers(page); |
1247 | do { |
1248 | if (u == nr_pages && |
1249 | ((s64)page->index << PAGE_CACHE_SHIFT) + |
1250 | bh_offset(bh) >= end) |
1251 | break; |
1252 | if (!buffer_new(bh)) |
1253 | continue; |
1254 | clear_buffer_new(bh); |
1255 | if (!buffer_uptodate(bh)) { |
1256 | if (PageUptodate(page)) |
1257 | set_buffer_uptodate(bh); |
1258 | else { |
1259 | zero_user(page, bh_offset(bh), |
1260 | blocksize); |
1261 | set_buffer_uptodate(bh); |
1262 | } |
1263 | } |
1264 | mark_buffer_dirty(bh); |
1265 | } while ((bh = bh->b_this_page) != head); |
1266 | } while (++u <= nr_pages); |
1267 | ntfs_error(vol->sb, "Failed. Returning error code %i.", err); |
1268 | return err; |
1269 | } |
1270 | |
1271 | /* |
1272 | * Copy as much as we can into the pages and return the number of bytes which |
1273 | * were successfully copied. If a fault is encountered then clear the pages |
1274 | * out to (ofs + bytes) and return the number of bytes which were copied. |
1275 | */ |
1276 | static inline size_t ntfs_copy_from_user(struct page **pages, |
1277 | unsigned nr_pages, unsigned ofs, const char __user *buf, |
1278 | size_t bytes) |
1279 | { |
1280 | struct page **last_page = pages + nr_pages; |
1281 | char *addr; |
1282 | size_t total = 0; |
1283 | unsigned len; |
1284 | int left; |
1285 | |
1286 | do { |
1287 | len = PAGE_CACHE_SIZE - ofs; |
1288 | if (len > bytes) |
1289 | len = bytes; |
1290 | addr = kmap_atomic(*pages, KM_USER0); |
1291 | left = __copy_from_user_inatomic(addr + ofs, buf, len); |
1292 | kunmap_atomic(addr, KM_USER0); |
1293 | if (unlikely(left)) { |
1294 | /* Do it the slow way. */ |
1295 | addr = kmap(*pages); |
1296 | left = __copy_from_user(addr + ofs, buf, len); |
1297 | kunmap(*pages); |
1298 | if (unlikely(left)) |
1299 | goto err_out; |
1300 | } |
1301 | total += len; |
1302 | bytes -= len; |
1303 | if (!bytes) |
1304 | break; |
1305 | buf += len; |
1306 | ofs = 0; |
1307 | } while (++pages < last_page); |
1308 | out: |
1309 | return total; |
1310 | err_out: |
1311 | total += len - left; |
1312 | /* Zero the rest of the target like __copy_from_user(). */ |
1313 | while (++pages < last_page) { |
1314 | bytes -= len; |
1315 | if (!bytes) |
1316 | break; |
1317 | len = PAGE_CACHE_SIZE; |
1318 | if (len > bytes) |
1319 | len = bytes; |
1320 | zero_user(*pages, 0, len); |
1321 | } |
1322 | goto out; |
1323 | } |
1324 | |
1325 | static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, |
1326 | const struct iovec *iov, size_t iov_ofs, size_t bytes) |
1327 | { |
1328 | size_t total = 0; |
1329 | |
1330 | while (1) { |
1331 | const char __user *buf = iov->iov_base + iov_ofs; |
1332 | unsigned len; |
1333 | size_t left; |
1334 | |
1335 | len = iov->iov_len - iov_ofs; |
1336 | if (len > bytes) |
1337 | len = bytes; |
1338 | left = __copy_from_user_inatomic(vaddr, buf, len); |
1339 | total += len; |
1340 | bytes -= len; |
1341 | vaddr += len; |
1342 | if (unlikely(left)) { |
1343 | total -= left; |
1344 | break; |
1345 | } |
1346 | if (!bytes) |
1347 | break; |
1348 | iov++; |
1349 | iov_ofs = 0; |
1350 | } |
1351 | return total; |
1352 | } |
1353 | |
1354 | static inline void ntfs_set_next_iovec(const struct iovec **iovp, |
1355 | size_t *iov_ofsp, size_t bytes) |
1356 | { |
1357 | const struct iovec *iov = *iovp; |
1358 | size_t iov_ofs = *iov_ofsp; |
1359 | |
1360 | while (bytes) { |
1361 | unsigned len; |
1362 | |
1363 | len = iov->iov_len - iov_ofs; |
1364 | if (len > bytes) |
1365 | len = bytes; |
1366 | bytes -= len; |
1367 | iov_ofs += len; |
1368 | if (iov->iov_len == iov_ofs) { |
1369 | iov++; |
1370 | iov_ofs = 0; |
1371 | } |
1372 | } |
1373 | *iovp = iov; |
1374 | *iov_ofsp = iov_ofs; |
1375 | } |
1376 | |
1377 | /* |
1378 | * This has the same side-effects and return value as ntfs_copy_from_user(). |
1379 | * The difference is that on a fault we need to memset the remainder of the |
1380 | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s |
1381 | * single-segment behaviour. |
1382 | * |
1383 | * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when |
1384 | * atomic and when not atomic. This is ok because it calls |
1385 | * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In |
1386 | * fact, the only difference between __copy_from_user_inatomic() and |
1387 | * __copy_from_user() is that the latter calls might_sleep() and the former |
1388 | * should not zero the tail of the buffer on error. And on many architectures |
1389 | * __copy_from_user_inatomic() is just defined to __copy_from_user() so it |
1390 | * makes no difference at all on those architectures. |
1391 | */ |
1392 | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, |
1393 | unsigned nr_pages, unsigned ofs, const struct iovec **iov, |
1394 | size_t *iov_ofs, size_t bytes) |
1395 | { |
1396 | struct page **last_page = pages + nr_pages; |
1397 | char *addr; |
1398 | size_t copied, len, total = 0; |
1399 | |
1400 | do { |
1401 | len = PAGE_CACHE_SIZE - ofs; |
1402 | if (len > bytes) |
1403 | len = bytes; |
1404 | addr = kmap_atomic(*pages, KM_USER0); |
1405 | copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, |
1406 | *iov, *iov_ofs, len); |
1407 | kunmap_atomic(addr, KM_USER0); |
1408 | if (unlikely(copied != len)) { |
1409 | /* Do it the slow way. */ |
1410 | addr = kmap(*pages); |
1411 | copied = __ntfs_copy_from_user_iovec_inatomic(addr + |
1412 | ofs, *iov, *iov_ofs, len); |
1413 | if (unlikely(copied != len)) |
1414 | goto err_out; |
1415 | kunmap(*pages); |
1416 | } |
1417 | total += len; |
1418 | ntfs_set_next_iovec(iov, iov_ofs, len); |
1419 | bytes -= len; |
1420 | if (!bytes) |
1421 | break; |
1422 | ofs = 0; |
1423 | } while (++pages < last_page); |
1424 | out: |
1425 | return total; |
1426 | err_out: |
1427 | BUG_ON(copied > len); |
1428 | /* Zero the rest of the target like __copy_from_user(). */ |
1429 | memset(addr + ofs + copied, 0, len - copied); |
1430 | kunmap(*pages); |
1431 | total += copied; |
1432 | ntfs_set_next_iovec(iov, iov_ofs, copied); |
1433 | while (++pages < last_page) { |
1434 | bytes -= len; |
1435 | if (!bytes) |
1436 | break; |
1437 | len = PAGE_CACHE_SIZE; |
1438 | if (len > bytes) |
1439 | len = bytes; |
1440 | zero_user(*pages, 0, len); |
1441 | } |
1442 | goto out; |
1443 | } |
1444 | |
1445 | static inline void ntfs_flush_dcache_pages(struct page **pages, |
1446 | unsigned nr_pages) |
1447 | { |
1448 | BUG_ON(!nr_pages); |
1449 | /* |
1450 | * Warning: Do not do the decrement at the same time as the call to |
1451 | * flush_dcache_page() because it is a NULL macro on i386 and hence the |
1452 | * decrement never happens so the loop never terminates. |
1453 | */ |
1454 | do { |
1455 | --nr_pages; |
1456 | flush_dcache_page(pages[nr_pages]); |
1457 | } while (nr_pages > 0); |
1458 | } |
1459 | |
1460 | /** |
1461 | * ntfs_commit_pages_after_non_resident_write - commit the received data |
1462 | * @pages: array of destination pages |
1463 | * @nr_pages: number of pages in @pages |
1464 | * @pos: byte position in file at which the write begins |
1465 | * @bytes: number of bytes to be written |
1466 | * |
1467 | * See description of ntfs_commit_pages_after_write(), below. |
1468 | */ |
1469 | static inline int ntfs_commit_pages_after_non_resident_write( |
1470 | struct page **pages, const unsigned nr_pages, |
1471 | s64 pos, size_t bytes) |
1472 | { |
1473 | s64 end, initialized_size; |
1474 | struct inode *vi; |
1475 | ntfs_inode *ni, *base_ni; |
1476 | struct buffer_head *bh, *head; |
1477 | ntfs_attr_search_ctx *ctx; |
1478 | MFT_RECORD *m; |
1479 | ATTR_RECORD *a; |
1480 | unsigned long flags; |
1481 | unsigned blocksize, u; |
1482 | int err; |
1483 | |
1484 | vi = pages[0]->mapping->host; |
1485 | ni = NTFS_I(vi); |
1486 | blocksize = vi->i_sb->s_blocksize; |
1487 | end = pos + bytes; |
1488 | u = 0; |
1489 | do { |
1490 | s64 bh_pos; |
1491 | struct page *page; |
1492 | bool partial; |
1493 | |
1494 | page = pages[u]; |
1495 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; |
1496 | bh = head = page_buffers(page); |
1497 | partial = false; |
1498 | do { |
1499 | s64 bh_end; |
1500 | |
1501 | bh_end = bh_pos + blocksize; |
1502 | if (bh_end <= pos || bh_pos >= end) { |
1503 | if (!buffer_uptodate(bh)) |
1504 | partial = true; |
1505 | } else { |
1506 | set_buffer_uptodate(bh); |
1507 | mark_buffer_dirty(bh); |
1508 | } |
1509 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); |
1510 | /* |
1511 | * If all buffers are now uptodate but the page is not, set the |
1512 | * page uptodate. |
1513 | */ |
1514 | if (!partial && !PageUptodate(page)) |
1515 | SetPageUptodate(page); |
1516 | } while (++u < nr_pages); |
1517 | /* |
1518 | * Finally, if we do not need to update initialized_size or i_size we |
1519 | * are finished. |
1520 | */ |
1521 | read_lock_irqsave(&ni->size_lock, flags); |
1522 | initialized_size = ni->initialized_size; |
1523 | read_unlock_irqrestore(&ni->size_lock, flags); |
1524 | if (end <= initialized_size) { |
1525 | ntfs_debug("Done."); |
1526 | return 0; |
1527 | } |
1528 | /* |
1529 | * Update initialized_size/i_size as appropriate, both in the inode and |
1530 | * the mft record. |
1531 | */ |
1532 | if (!NInoAttr(ni)) |
1533 | base_ni = ni; |
1534 | else |
1535 | base_ni = ni->ext.base_ntfs_ino; |
1536 | /* Map, pin, and lock the mft record. */ |
1537 | m = map_mft_record(base_ni); |
1538 | if (IS_ERR(m)) { |
1539 | err = PTR_ERR(m); |
1540 | m = NULL; |
1541 | ctx = NULL; |
1542 | goto err_out; |
1543 | } |
1544 | BUG_ON(!NInoNonResident(ni)); |
1545 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
1546 | if (unlikely(!ctx)) { |
1547 | err = -ENOMEM; |
1548 | goto err_out; |
1549 | } |
1550 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
1551 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
1552 | if (unlikely(err)) { |
1553 | if (err == -ENOENT) |
1554 | err = -EIO; |
1555 | goto err_out; |
1556 | } |
1557 | a = ctx->attr; |
1558 | BUG_ON(!a->non_resident); |
1559 | write_lock_irqsave(&ni->size_lock, flags); |
1560 | BUG_ON(end > ni->allocated_size); |
1561 | ni->initialized_size = end; |
1562 | a->data.non_resident.initialized_size = cpu_to_sle64(end); |
1563 | if (end > i_size_read(vi)) { |
1564 | i_size_write(vi, end); |
1565 | a->data.non_resident.data_size = |
1566 | a->data.non_resident.initialized_size; |
1567 | } |
1568 | write_unlock_irqrestore(&ni->size_lock, flags); |
1569 | /* Mark the mft record dirty, so it gets written back. */ |
1570 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1571 | mark_mft_record_dirty(ctx->ntfs_ino); |
1572 | ntfs_attr_put_search_ctx(ctx); |
1573 | unmap_mft_record(base_ni); |
1574 | ntfs_debug("Done."); |
1575 | return 0; |
1576 | err_out: |
1577 | if (ctx) |
1578 | ntfs_attr_put_search_ctx(ctx); |
1579 | if (m) |
1580 | unmap_mft_record(base_ni); |
1581 | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " |
1582 | "code %i).", err); |
1583 | if (err != -ENOMEM) |
1584 | NVolSetErrors(ni->vol); |
1585 | return err; |
1586 | } |
1587 | |
1588 | /** |
1589 | * ntfs_commit_pages_after_write - commit the received data |
1590 | * @pages: array of destination pages |
1591 | * @nr_pages: number of pages in @pages |
1592 | * @pos: byte position in file at which the write begins |
1593 | * @bytes: number of bytes to be written |
1594 | * |
1595 | * This is called from ntfs_file_buffered_write() with i_mutex held on the inode |
1596 | * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are |
1597 | * locked but not kmap()ped. The source data has already been copied into the |
1598 | * @page. ntfs_prepare_pages_for_non_resident_write() has been called before |
1599 | * the data was copied (for non-resident attributes only) and it returned |
1600 | * success. |
1601 | * |
1602 | * Need to set uptodate and mark dirty all buffers within the boundary of the |
1603 | * write. If all buffers in a page are uptodate we set the page uptodate, too. |
1604 | * |
1605 | * Setting the buffers dirty ensures that they get written out later when |
1606 | * ntfs_writepage() is invoked by the VM. |
1607 | * |
1608 | * Finally, we need to update i_size and initialized_size as appropriate both |
1609 | * in the inode and the mft record. |
1610 | * |
1611 | * This is modelled after fs/buffer.c::generic_commit_write(), which marks |
1612 | * buffers uptodate and dirty, sets the page uptodate if all buffers in the |
1613 | * page are uptodate, and updates i_size if the end of io is beyond i_size. In |
1614 | * that case, it also marks the inode dirty. |
1615 | * |
1616 | * If things have gone as outlined in |
1617 | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page |
1618 | * content modifications here for non-resident attributes. For resident |
1619 | * attributes we need to do the uptodate bringing here which we combine with |
1620 | * the copying into the mft record which means we save one atomic kmap. |
1621 | * |
1622 | * Return 0 on success or -errno on error. |
1623 | */ |
1624 | static int ntfs_commit_pages_after_write(struct page **pages, |
1625 | const unsigned nr_pages, s64 pos, size_t bytes) |
1626 | { |
1627 | s64 end, initialized_size; |
1628 | loff_t i_size; |
1629 | struct inode *vi; |
1630 | ntfs_inode *ni, *base_ni; |
1631 | struct page *page; |
1632 | ntfs_attr_search_ctx *ctx; |
1633 | MFT_RECORD *m; |
1634 | ATTR_RECORD *a; |
1635 | char *kattr, *kaddr; |
1636 | unsigned long flags; |
1637 | u32 attr_len; |
1638 | int err; |
1639 | |
1640 | BUG_ON(!nr_pages); |
1641 | BUG_ON(!pages); |
1642 | page = pages[0]; |
1643 | BUG_ON(!page); |
1644 | vi = page->mapping->host; |
1645 | ni = NTFS_I(vi); |
1646 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " |
1647 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", |
1648 | vi->i_ino, ni->type, page->index, nr_pages, |
1649 | (long long)pos, bytes); |
1650 | if (NInoNonResident(ni)) |
1651 | return ntfs_commit_pages_after_non_resident_write(pages, |
1652 | nr_pages, pos, bytes); |
1653 | BUG_ON(nr_pages > 1); |
1654 | /* |
1655 | * Attribute is resident, implying it is not compressed, encrypted, or |
1656 | * sparse. |
1657 | */ |
1658 | if (!NInoAttr(ni)) |
1659 | base_ni = ni; |
1660 | else |
1661 | base_ni = ni->ext.base_ntfs_ino; |
1662 | BUG_ON(NInoNonResident(ni)); |
1663 | /* Map, pin, and lock the mft record. */ |
1664 | m = map_mft_record(base_ni); |
1665 | if (IS_ERR(m)) { |
1666 | err = PTR_ERR(m); |
1667 | m = NULL; |
1668 | ctx = NULL; |
1669 | goto err_out; |
1670 | } |
1671 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
1672 | if (unlikely(!ctx)) { |
1673 | err = -ENOMEM; |
1674 | goto err_out; |
1675 | } |
1676 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
1677 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
1678 | if (unlikely(err)) { |
1679 | if (err == -ENOENT) |
1680 | err = -EIO; |
1681 | goto err_out; |
1682 | } |
1683 | a = ctx->attr; |
1684 | BUG_ON(a->non_resident); |
1685 | /* The total length of the attribute value. */ |
1686 | attr_len = le32_to_cpu(a->data.resident.value_length); |
1687 | i_size = i_size_read(vi); |
1688 | BUG_ON(attr_len != i_size); |
1689 | BUG_ON(pos > attr_len); |
1690 | end = pos + bytes; |
1691 | BUG_ON(end > le32_to_cpu(a->length) - |
1692 | le16_to_cpu(a->data.resident.value_offset)); |
1693 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); |
1694 | kaddr = kmap_atomic(page, KM_USER0); |
1695 | /* Copy the received data from the page to the mft record. */ |
1696 | memcpy(kattr + pos, kaddr + pos, bytes); |
1697 | /* Update the attribute length if necessary. */ |
1698 | if (end > attr_len) { |
1699 | attr_len = end; |
1700 | a->data.resident.value_length = cpu_to_le32(attr_len); |
1701 | } |
1702 | /* |
1703 | * If the page is not uptodate, bring the out of bounds area(s) |
1704 | * uptodate by copying data from the mft record to the page. |
1705 | */ |
1706 | if (!PageUptodate(page)) { |
1707 | if (pos > 0) |
1708 | memcpy(kaddr, kattr, pos); |
1709 | if (end < attr_len) |
1710 | memcpy(kaddr + end, kattr + end, attr_len - end); |
1711 | /* Zero the region outside the end of the attribute value. */ |
1712 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); |
1713 | flush_dcache_page(page); |
1714 | SetPageUptodate(page); |
1715 | } |
1716 | kunmap_atomic(kaddr, KM_USER0); |
1717 | /* Update initialized_size/i_size if necessary. */ |
1718 | read_lock_irqsave(&ni->size_lock, flags); |
1719 | initialized_size = ni->initialized_size; |
1720 | BUG_ON(end > ni->allocated_size); |
1721 | read_unlock_irqrestore(&ni->size_lock, flags); |
1722 | BUG_ON(initialized_size != i_size); |
1723 | if (end > initialized_size) { |
1724 | write_lock_irqsave(&ni->size_lock, flags); |
1725 | ni->initialized_size = end; |
1726 | i_size_write(vi, end); |
1727 | write_unlock_irqrestore(&ni->size_lock, flags); |
1728 | } |
1729 | /* Mark the mft record dirty, so it gets written back. */ |
1730 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1731 | mark_mft_record_dirty(ctx->ntfs_ino); |
1732 | ntfs_attr_put_search_ctx(ctx); |
1733 | unmap_mft_record(base_ni); |
1734 | ntfs_debug("Done."); |
1735 | return 0; |
1736 | err_out: |
1737 | if (err == -ENOMEM) { |
1738 | ntfs_warning(vi->i_sb, "Error allocating memory required to " |
1739 | "commit the write."); |
1740 | if (PageUptodate(page)) { |
1741 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " |
1742 | "dirty so the write will be retried " |
1743 | "later on by the VM."); |
1744 | /* |
1745 | * Put the page on mapping->dirty_pages, but leave its |
1746 | * buffers' dirty state as-is. |
1747 | */ |
1748 | __set_page_dirty_nobuffers(page); |
1749 | err = 0; |
1750 | } else |
1751 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " |
1752 | "data has been lost."); |
1753 | } else { |
1754 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " |
1755 | "with error %i.", err); |
1756 | NVolSetErrors(ni->vol); |
1757 | } |
1758 | if (ctx) |
1759 | ntfs_attr_put_search_ctx(ctx); |
1760 | if (m) |
1761 | unmap_mft_record(base_ni); |
1762 | return err; |
1763 | } |
1764 | |
1765 | /** |
1766 | * ntfs_file_buffered_write - |
1767 | * |
1768 | * Locking: The vfs is holding ->i_mutex on the inode. |
1769 | */ |
1770 | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, |
1771 | const struct iovec *iov, unsigned long nr_segs, |
1772 | loff_t pos, loff_t *ppos, size_t count) |
1773 | { |
1774 | struct file *file = iocb->ki_filp; |
1775 | struct address_space *mapping = file->f_mapping; |
1776 | struct inode *vi = mapping->host; |
1777 | ntfs_inode *ni = NTFS_I(vi); |
1778 | ntfs_volume *vol = ni->vol; |
1779 | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; |
1780 | struct page *cached_page = NULL; |
1781 | char __user *buf = NULL; |
1782 | s64 end, ll; |
1783 | VCN last_vcn; |
1784 | LCN lcn; |
1785 | unsigned long flags; |
1786 | size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ |
1787 | ssize_t status, written; |
1788 | unsigned nr_pages; |
1789 | int err; |
1790 | |
1791 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " |
1792 | "pos 0x%llx, count 0x%lx.", |
1793 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), |
1794 | (unsigned long long)pos, (unsigned long)count); |
1795 | if (unlikely(!count)) |
1796 | return 0; |
1797 | BUG_ON(NInoMstProtected(ni)); |
1798 | /* |
1799 | * If the attribute is not an index root and it is encrypted or |
1800 | * compressed, we cannot write to it yet. Note we need to check for |
1801 | * AT_INDEX_ALLOCATION since this is the type of both directory and |
1802 | * index inodes. |
1803 | */ |
1804 | if (ni->type != AT_INDEX_ALLOCATION) { |
1805 | /* If file is encrypted, deny access, just like NT4. */ |
1806 | if (NInoEncrypted(ni)) { |
1807 | /* |
1808 | * Reminder for later: Encrypted files are _always_ |
1809 | * non-resident so that the content can always be |
1810 | * encrypted. |
1811 | */ |
1812 | ntfs_debug("Denying write access to encrypted file."); |
1813 | return -EACCES; |
1814 | } |
1815 | if (NInoCompressed(ni)) { |
1816 | /* Only unnamed $DATA attribute can be compressed. */ |
1817 | BUG_ON(ni->type != AT_DATA); |
1818 | BUG_ON(ni->name_len); |
1819 | /* |
1820 | * Reminder for later: If resident, the data is not |
1821 | * actually compressed. Only on the switch to non- |
1822 | * resident does compression kick in. This is in |
1823 | * contrast to encrypted files (see above). |
1824 | */ |
1825 | ntfs_error(vi->i_sb, "Writing to compressed files is " |
1826 | "not implemented yet. Sorry."); |
1827 | return -EOPNOTSUPP; |
1828 | } |
1829 | } |
1830 | /* |
1831 | * If a previous ntfs_truncate() failed, repeat it and abort if it |
1832 | * fails again. |
1833 | */ |
1834 | if (unlikely(NInoTruncateFailed(ni))) { |
1835 | down_write(&vi->i_alloc_sem); |
1836 | err = ntfs_truncate(vi); |
1837 | up_write(&vi->i_alloc_sem); |
1838 | if (err || NInoTruncateFailed(ni)) { |
1839 | if (!err) |
1840 | err = -EIO; |
1841 | ntfs_error(vol->sb, "Cannot perform write to inode " |
1842 | "0x%lx, attribute type 0x%x, because " |
1843 | "ntfs_truncate() failed (error code " |
1844 | "%i).", vi->i_ino, |
1845 | (unsigned)le32_to_cpu(ni->type), err); |
1846 | return err; |
1847 | } |
1848 | } |
1849 | /* The first byte after the write. */ |
1850 | end = pos + count; |
1851 | /* |
1852 | * If the write goes beyond the allocated size, extend the allocation |
1853 | * to cover the whole of the write, rounded up to the nearest cluster. |
1854 | */ |
1855 | read_lock_irqsave(&ni->size_lock, flags); |
1856 | ll = ni->allocated_size; |
1857 | read_unlock_irqrestore(&ni->size_lock, flags); |
1858 | if (end > ll) { |
1859 | /* Extend the allocation without changing the data size. */ |
1860 | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); |
1861 | if (likely(ll >= 0)) { |
1862 | BUG_ON(pos >= ll); |
1863 | /* If the extension was partial truncate the write. */ |
1864 | if (end > ll) { |
1865 | ntfs_debug("Truncating write to inode 0x%lx, " |
1866 | "attribute type 0x%x, because " |
1867 | "the allocation was only " |
1868 | "partially extended.", |
1869 | vi->i_ino, (unsigned) |
1870 | le32_to_cpu(ni->type)); |
1871 | end = ll; |
1872 | count = ll - pos; |
1873 | } |
1874 | } else { |
1875 | err = ll; |
1876 | read_lock_irqsave(&ni->size_lock, flags); |
1877 | ll = ni->allocated_size; |
1878 | read_unlock_irqrestore(&ni->size_lock, flags); |
1879 | /* Perform a partial write if possible or fail. */ |
1880 | if (pos < ll) { |
1881 | ntfs_debug("Truncating write to inode 0x%lx, " |
1882 | "attribute type 0x%x, because " |
1883 | "extending the allocation " |
1884 | "failed (error code %i).", |
1885 | vi->i_ino, (unsigned) |
1886 | le32_to_cpu(ni->type), err); |
1887 | end = ll; |
1888 | count = ll - pos; |
1889 | } else { |
1890 | ntfs_error(vol->sb, "Cannot perform write to " |
1891 | "inode 0x%lx, attribute type " |
1892 | "0x%x, because extending the " |
1893 | "allocation failed (error " |
1894 | "code %i).", vi->i_ino, |
1895 | (unsigned) |
1896 | le32_to_cpu(ni->type), err); |
1897 | return err; |
1898 | } |
1899 | } |
1900 | } |
1901 | written = 0; |
1902 | /* |
1903 | * If the write starts beyond the initialized size, extend it up to the |
1904 | * beginning of the write and initialize all non-sparse space between |
1905 | * the old initialized size and the new one. This automatically also |
1906 | * increments the vfs inode->i_size to keep it above or equal to the |
1907 | * initialized_size. |
1908 | */ |
1909 | read_lock_irqsave(&ni->size_lock, flags); |
1910 | ll = ni->initialized_size; |
1911 | read_unlock_irqrestore(&ni->size_lock, flags); |
1912 | if (pos > ll) { |
1913 | err = ntfs_attr_extend_initialized(ni, pos); |
1914 | if (err < 0) { |
1915 | ntfs_error(vol->sb, "Cannot perform write to inode " |
1916 | "0x%lx, attribute type 0x%x, because " |
1917 | "extending the initialized size " |
1918 | "failed (error code %i).", vi->i_ino, |
1919 | (unsigned)le32_to_cpu(ni->type), err); |
1920 | status = err; |
1921 | goto err_out; |
1922 | } |
1923 | } |
1924 | /* |
1925 | * Determine the number of pages per cluster for non-resident |
1926 | * attributes. |
1927 | */ |
1928 | nr_pages = 1; |
1929 | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) |
1930 | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; |
1931 | /* Finally, perform the actual write. */ |
1932 | last_vcn = -1; |
1933 | if (likely(nr_segs == 1)) |
1934 | buf = iov->iov_base; |
1935 | do { |
1936 | VCN vcn; |
1937 | pgoff_t idx, start_idx; |
1938 | unsigned ofs, do_pages, u; |
1939 | size_t copied; |
1940 | |
1941 | start_idx = idx = pos >> PAGE_CACHE_SHIFT; |
1942 | ofs = pos & ~PAGE_CACHE_MASK; |
1943 | bytes = PAGE_CACHE_SIZE - ofs; |
1944 | do_pages = 1; |
1945 | if (nr_pages > 1) { |
1946 | vcn = pos >> vol->cluster_size_bits; |
1947 | if (vcn != last_vcn) { |
1948 | last_vcn = vcn; |
1949 | /* |
1950 | * Get the lcn of the vcn the write is in. If |
1951 | * it is a hole, need to lock down all pages in |
1952 | * the cluster. |
1953 | */ |
1954 | down_read(&ni->runlist.lock); |
1955 | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> |
1956 | vol->cluster_size_bits, false); |
1957 | up_read(&ni->runlist.lock); |
1958 | if (unlikely(lcn < LCN_HOLE)) { |
1959 | status = -EIO; |
1960 | if (lcn == LCN_ENOMEM) |
1961 | status = -ENOMEM; |
1962 | else |
1963 | ntfs_error(vol->sb, "Cannot " |
1964 | "perform write to " |
1965 | "inode 0x%lx, " |
1966 | "attribute type 0x%x, " |
1967 | "because the attribute " |
1968 | "is corrupt.", |
1969 | vi->i_ino, (unsigned) |
1970 | le32_to_cpu(ni->type)); |
1971 | break; |
1972 | } |
1973 | if (lcn == LCN_HOLE) { |
1974 | start_idx = (pos & ~(s64) |
1975 | vol->cluster_size_mask) |
1976 | >> PAGE_CACHE_SHIFT; |
1977 | bytes = vol->cluster_size - (pos & |
1978 | vol->cluster_size_mask); |
1979 | do_pages = nr_pages; |
1980 | } |
1981 | } |
1982 | } |
1983 | if (bytes > count) |
1984 | bytes = count; |
1985 | /* |
1986 | * Bring in the user page(s) that we will copy from _first_. |
1987 | * Otherwise there is a nasty deadlock on copying from the same |
1988 | * page(s) as we are writing to, without it/them being marked |
1989 | * up-to-date. Note, at present there is nothing to stop the |
1990 | * pages being swapped out between us bringing them into memory |
1991 | * and doing the actual copying. |
1992 | */ |
1993 | if (likely(nr_segs == 1)) |
1994 | ntfs_fault_in_pages_readable(buf, bytes); |
1995 | else |
1996 | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); |
1997 | /* Get and lock @do_pages starting at index @start_idx. */ |
1998 | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, |
1999 | pages, &cached_page); |
2000 | if (unlikely(status)) |
2001 | break; |
2002 | /* |
2003 | * For non-resident attributes, we need to fill any holes with |
2004 | * actual clusters and ensure all bufferes are mapped. We also |
2005 | * need to bring uptodate any buffers that are only partially |
2006 | * being written to. |
2007 | */ |
2008 | if (NInoNonResident(ni)) { |
2009 | status = ntfs_prepare_pages_for_non_resident_write( |
2010 | pages, do_pages, pos, bytes); |
2011 | if (unlikely(status)) { |
2012 | loff_t i_size; |
2013 | |
2014 | do { |
2015 | unlock_page(pages[--do_pages]); |
2016 | page_cache_release(pages[do_pages]); |
2017 | } while (do_pages); |
2018 | /* |
2019 | * The write preparation may have instantiated |
2020 | * allocated space outside i_size. Trim this |
2021 | * off again. We can ignore any errors in this |
2022 | * case as we will just be waisting a bit of |
2023 | * allocated space, which is not a disaster. |
2024 | */ |
2025 | i_size = i_size_read(vi); |
2026 | if (pos + bytes > i_size) |
2027 | vmtruncate(vi, i_size); |
2028 | break; |
2029 | } |
2030 | } |
2031 | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; |
2032 | if (likely(nr_segs == 1)) { |
2033 | copied = ntfs_copy_from_user(pages + u, do_pages - u, |
2034 | ofs, buf, bytes); |
2035 | buf += copied; |
2036 | } else |
2037 | copied = ntfs_copy_from_user_iovec(pages + u, |
2038 | do_pages - u, ofs, &iov, &iov_ofs, |
2039 | bytes); |
2040 | ntfs_flush_dcache_pages(pages + u, do_pages - u); |
2041 | status = ntfs_commit_pages_after_write(pages, do_pages, pos, |
2042 | bytes); |
2043 | if (likely(!status)) { |
2044 | written += copied; |
2045 | count -= copied; |
2046 | pos += copied; |
2047 | if (unlikely(copied != bytes)) |
2048 | status = -EFAULT; |
2049 | } |
2050 | do { |
2051 | unlock_page(pages[--do_pages]); |
2052 | mark_page_accessed(pages[do_pages]); |
2053 | page_cache_release(pages[do_pages]); |
2054 | } while (do_pages); |
2055 | if (unlikely(status)) |
2056 | break; |
2057 | balance_dirty_pages_ratelimited(mapping); |
2058 | cond_resched(); |
2059 | } while (count); |
2060 | err_out: |
2061 | *ppos = pos; |
2062 | if (cached_page) |
2063 | page_cache_release(cached_page); |
2064 | ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", |
2065 | written ? "written" : "status", (unsigned long)written, |
2066 | (long)status); |
2067 | return written ? written : status; |
2068 | } |
2069 | |
2070 | /** |
2071 | * ntfs_file_aio_write_nolock - |
2072 | */ |
2073 | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, |
2074 | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) |
2075 | { |
2076 | struct file *file = iocb->ki_filp; |
2077 | struct address_space *mapping = file->f_mapping; |
2078 | struct inode *inode = mapping->host; |
2079 | loff_t pos; |
2080 | size_t count; /* after file limit checks */ |
2081 | ssize_t written, err; |
2082 | |
2083 | count = 0; |
2084 | err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); |
2085 | if (err) |
2086 | return err; |
2087 | pos = *ppos; |
2088 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); |
2089 | /* We can write back this queue in page reclaim. */ |
2090 | current->backing_dev_info = mapping->backing_dev_info; |
2091 | written = 0; |
2092 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); |
2093 | if (err) |
2094 | goto out; |
2095 | if (!count) |
2096 | goto out; |
2097 | err = file_remove_suid(file); |
2098 | if (err) |
2099 | goto out; |
2100 | file_update_time(file); |
2101 | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, |
2102 | count); |
2103 | out: |
2104 | current->backing_dev_info = NULL; |
2105 | return written ? written : err; |
2106 | } |
2107 | |
2108 | /** |
2109 | * ntfs_file_aio_write - |
2110 | */ |
2111 | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2112 | unsigned long nr_segs, loff_t pos) |
2113 | { |
2114 | struct file *file = iocb->ki_filp; |
2115 | struct address_space *mapping = file->f_mapping; |
2116 | struct inode *inode = mapping->host; |
2117 | ssize_t ret; |
2118 | |
2119 | BUG_ON(iocb->ki_pos != pos); |
2120 | |
2121 | mutex_lock(&inode->i_mutex); |
2122 | ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); |
2123 | mutex_unlock(&inode->i_mutex); |
2124 | if (ret > 0) { |
2125 | int err = generic_write_sync(file, pos, ret); |
2126 | if (err < 0) |
2127 | ret = err; |
2128 | } |
2129 | return ret; |
2130 | } |
2131 | |
2132 | /** |
2133 | * ntfs_file_fsync - sync a file to disk |
2134 | * @filp: file to be synced |
2135 | * @datasync: if non-zero only flush user data and not metadata |
2136 | * |
2137 | * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync |
2138 | * system calls. This function is inspired by fs/buffer.c::file_fsync(). |
2139 | * |
2140 | * If @datasync is false, write the mft record and all associated extent mft |
2141 | * records as well as the $DATA attribute and then sync the block device. |
2142 | * |
2143 | * If @datasync is true and the attribute is non-resident, we skip the writing |
2144 | * of the mft record and all associated extent mft records (this might still |
2145 | * happen due to the write_inode_now() call). |
2146 | * |
2147 | * Also, if @datasync is true, we do not wait on the inode to be written out |
2148 | * but we always wait on the page cache pages to be written out. |
2149 | * |
2150 | * Locking: Caller must hold i_mutex on the inode. |
2151 | * |
2152 | * TODO: We should probably also write all attribute/index inodes associated |
2153 | * with this inode but since we have no simple way of getting to them we ignore |
2154 | * this problem for now. |
2155 | */ |
2156 | static int ntfs_file_fsync(struct file *filp, int datasync) |
2157 | { |
2158 | struct inode *vi = filp->f_mapping->host; |
2159 | int err, ret = 0; |
2160 | |
2161 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); |
2162 | BUG_ON(S_ISDIR(vi->i_mode)); |
2163 | if (!datasync || !NInoNonResident(NTFS_I(vi))) |
2164 | ret = __ntfs_write_inode(vi, 1); |
2165 | write_inode_now(vi, !datasync); |
2166 | /* |
2167 | * NOTE: If we were to use mapping->private_list (see ext2 and |
2168 | * fs/buffer.c) for dirty blocks then we could optimize the below to be |
2169 | * sync_mapping_buffers(vi->i_mapping). |
2170 | */ |
2171 | err = sync_blockdev(vi->i_sb->s_bdev); |
2172 | if (unlikely(err && !ret)) |
2173 | ret = err; |
2174 | if (likely(!ret)) |
2175 | ntfs_debug("Done."); |
2176 | else |
2177 | ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " |
2178 | "%u.", datasync ? "data" : "", vi->i_ino, -ret); |
2179 | return ret; |
2180 | } |
2181 | |
2182 | #endif /* NTFS_RW */ |
2183 | |
2184 | const struct file_operations ntfs_file_ops = { |
2185 | .llseek = generic_file_llseek, /* Seek inside file. */ |
2186 | .read = do_sync_read, /* Read from file. */ |
2187 | .aio_read = generic_file_aio_read, /* Async read from file. */ |
2188 | #ifdef NTFS_RW |
2189 | .write = do_sync_write, /* Write to file. */ |
2190 | .aio_write = ntfs_file_aio_write, /* Async write to file. */ |
2191 | /*.release = ,*/ /* Last file is closed. See |
2192 | fs/ext2/file.c:: |
2193 | ext2_release_file() for |
2194 | how to use this to discard |
2195 | preallocated space for |
2196 | write opened files. */ |
2197 | .fsync = ntfs_file_fsync, /* Sync a file to disk. */ |
2198 | /*.aio_fsync = ,*/ /* Sync all outstanding async |
2199 | i/o operations on a |
2200 | kiocb. */ |
2201 | #endif /* NTFS_RW */ |
2202 | /*.ioctl = ,*/ /* Perform function on the |
2203 | mounted filesystem. */ |
2204 | .mmap = generic_file_mmap, /* Mmap file. */ |
2205 | .open = ntfs_file_open, /* Open file. */ |
2206 | .splice_read = generic_file_splice_read /* Zero-copy data send with |
2207 | the data source being on |
2208 | the ntfs partition. We do |
2209 | not need to care about the |
2210 | data destination. */ |
2211 | /*.sendpage = ,*/ /* Zero-copy data send with |
2212 | the data destination being |
2213 | on the ntfs partition. We |
2214 | do not need to care about |
2215 | the data source. */ |
2216 | }; |
2217 | |
2218 | const struct inode_operations ntfs_file_inode_ops = { |
2219 | #ifdef NTFS_RW |
2220 | .truncate = ntfs_truncate_vfs, |
2221 | .setattr = ntfs_setattr, |
2222 | #endif /* NTFS_RW */ |
2223 | }; |
2224 | |
2225 | const struct file_operations ntfs_empty_file_ops = {}; |
2226 | |
2227 | const struct inode_operations ntfs_empty_inode_ops = {}; |
2228 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9