Root/
1 | /* -*- mode: c; c-basic-offset: 8; -*- |
2 | * vim: noexpandtab sw=8 ts=8 sts=0: |
3 | * |
4 | * Copyright (C) 2002, 2004 Oracle. All rights reserved. |
5 | * |
6 | * This program is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2 of the License, or (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU General Public |
17 | * License along with this program; if not, write to the |
18 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
19 | * Boston, MA 021110-1307, USA. |
20 | */ |
21 | |
22 | #include <linux/fs.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/highmem.h> |
25 | #include <linux/pagemap.h> |
26 | #include <asm/byteorder.h> |
27 | #include <linux/swap.h> |
28 | #include <linux/pipe_fs_i.h> |
29 | #include <linux/mpage.h> |
30 | #include <linux/quotaops.h> |
31 | |
32 | #include <cluster/masklog.h> |
33 | |
34 | #include "ocfs2.h" |
35 | |
36 | #include "alloc.h" |
37 | #include "aops.h" |
38 | #include "dlmglue.h" |
39 | #include "extent_map.h" |
40 | #include "file.h" |
41 | #include "inode.h" |
42 | #include "journal.h" |
43 | #include "suballoc.h" |
44 | #include "super.h" |
45 | #include "symlink.h" |
46 | #include "refcounttree.h" |
47 | #include "ocfs2_trace.h" |
48 | |
49 | #include "buffer_head_io.h" |
50 | |
51 | static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, |
52 | struct buffer_head *bh_result, int create) |
53 | { |
54 | int err = -EIO; |
55 | int status; |
56 | struct ocfs2_dinode *fe = NULL; |
57 | struct buffer_head *bh = NULL; |
58 | struct buffer_head *buffer_cache_bh = NULL; |
59 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
60 | void *kaddr; |
61 | |
62 | trace_ocfs2_symlink_get_block( |
63 | (unsigned long long)OCFS2_I(inode)->ip_blkno, |
64 | (unsigned long long)iblock, bh_result, create); |
65 | |
66 | BUG_ON(ocfs2_inode_is_fast_symlink(inode)); |
67 | |
68 | if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { |
69 | mlog(ML_ERROR, "block offset > PATH_MAX: %llu", |
70 | (unsigned long long)iblock); |
71 | goto bail; |
72 | } |
73 | |
74 | status = ocfs2_read_inode_block(inode, &bh); |
75 | if (status < 0) { |
76 | mlog_errno(status); |
77 | goto bail; |
78 | } |
79 | fe = (struct ocfs2_dinode *) bh->b_data; |
80 | |
81 | if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, |
82 | le32_to_cpu(fe->i_clusters))) { |
83 | mlog(ML_ERROR, "block offset is outside the allocated size: " |
84 | "%llu\n", (unsigned long long)iblock); |
85 | goto bail; |
86 | } |
87 | |
88 | /* We don't use the page cache to create symlink data, so if |
89 | * need be, copy it over from the buffer cache. */ |
90 | if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { |
91 | u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + |
92 | iblock; |
93 | buffer_cache_bh = sb_getblk(osb->sb, blkno); |
94 | if (!buffer_cache_bh) { |
95 | mlog(ML_ERROR, "couldn't getblock for symlink!\n"); |
96 | goto bail; |
97 | } |
98 | |
99 | /* we haven't locked out transactions, so a commit |
100 | * could've happened. Since we've got a reference on |
101 | * the bh, even if it commits while we're doing the |
102 | * copy, the data is still good. */ |
103 | if (buffer_jbd(buffer_cache_bh) |
104 | && ocfs2_inode_is_new(inode)) { |
105 | kaddr = kmap_atomic(bh_result->b_page, KM_USER0); |
106 | if (!kaddr) { |
107 | mlog(ML_ERROR, "couldn't kmap!\n"); |
108 | goto bail; |
109 | } |
110 | memcpy(kaddr + (bh_result->b_size * iblock), |
111 | buffer_cache_bh->b_data, |
112 | bh_result->b_size); |
113 | kunmap_atomic(kaddr, KM_USER0); |
114 | set_buffer_uptodate(bh_result); |
115 | } |
116 | brelse(buffer_cache_bh); |
117 | } |
118 | |
119 | map_bh(bh_result, inode->i_sb, |
120 | le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); |
121 | |
122 | err = 0; |
123 | |
124 | bail: |
125 | brelse(bh); |
126 | |
127 | return err; |
128 | } |
129 | |
130 | int ocfs2_get_block(struct inode *inode, sector_t iblock, |
131 | struct buffer_head *bh_result, int create) |
132 | { |
133 | int err = 0; |
134 | unsigned int ext_flags; |
135 | u64 max_blocks = bh_result->b_size >> inode->i_blkbits; |
136 | u64 p_blkno, count, past_eof; |
137 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
138 | |
139 | trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, |
140 | (unsigned long long)iblock, bh_result, create); |
141 | |
142 | if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) |
143 | mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", |
144 | inode, inode->i_ino); |
145 | |
146 | if (S_ISLNK(inode->i_mode)) { |
147 | /* this always does I/O for some reason. */ |
148 | err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); |
149 | goto bail; |
150 | } |
151 | |
152 | err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, |
153 | &ext_flags); |
154 | if (err) { |
155 | mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " |
156 | "%llu, NULL)\n", err, inode, (unsigned long long)iblock, |
157 | (unsigned long long)p_blkno); |
158 | goto bail; |
159 | } |
160 | |
161 | if (max_blocks < count) |
162 | count = max_blocks; |
163 | |
164 | /* |
165 | * ocfs2 never allocates in this function - the only time we |
166 | * need to use BH_New is when we're extending i_size on a file |
167 | * system which doesn't support holes, in which case BH_New |
168 | * allows __block_write_begin() to zero. |
169 | * |
170 | * If we see this on a sparse file system, then a truncate has |
171 | * raced us and removed the cluster. In this case, we clear |
172 | * the buffers dirty and uptodate bits and let the buffer code |
173 | * ignore it as a hole. |
174 | */ |
175 | if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { |
176 | clear_buffer_dirty(bh_result); |
177 | clear_buffer_uptodate(bh_result); |
178 | goto bail; |
179 | } |
180 | |
181 | /* Treat the unwritten extent as a hole for zeroing purposes. */ |
182 | if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) |
183 | map_bh(bh_result, inode->i_sb, p_blkno); |
184 | |
185 | bh_result->b_size = count << inode->i_blkbits; |
186 | |
187 | if (!ocfs2_sparse_alloc(osb)) { |
188 | if (p_blkno == 0) { |
189 | err = -EIO; |
190 | mlog(ML_ERROR, |
191 | "iblock = %llu p_blkno = %llu blkno=(%llu)\n", |
192 | (unsigned long long)iblock, |
193 | (unsigned long long)p_blkno, |
194 | (unsigned long long)OCFS2_I(inode)->ip_blkno); |
195 | mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); |
196 | dump_stack(); |
197 | goto bail; |
198 | } |
199 | } |
200 | |
201 | past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); |
202 | |
203 | trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, |
204 | (unsigned long long)past_eof); |
205 | if (create && (iblock >= past_eof)) |
206 | set_buffer_new(bh_result); |
207 | |
208 | bail: |
209 | if (err < 0) |
210 | err = -EIO; |
211 | |
212 | return err; |
213 | } |
214 | |
215 | int ocfs2_read_inline_data(struct inode *inode, struct page *page, |
216 | struct buffer_head *di_bh) |
217 | { |
218 | void *kaddr; |
219 | loff_t size; |
220 | struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
221 | |
222 | if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { |
223 | ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", |
224 | (unsigned long long)OCFS2_I(inode)->ip_blkno); |
225 | return -EROFS; |
226 | } |
227 | |
228 | size = i_size_read(inode); |
229 | |
230 | if (size > PAGE_CACHE_SIZE || |
231 | size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { |
232 | ocfs2_error(inode->i_sb, |
233 | "Inode %llu has with inline data has bad size: %Lu", |
234 | (unsigned long long)OCFS2_I(inode)->ip_blkno, |
235 | (unsigned long long)size); |
236 | return -EROFS; |
237 | } |
238 | |
239 | kaddr = kmap_atomic(page, KM_USER0); |
240 | if (size) |
241 | memcpy(kaddr, di->id2.i_data.id_data, size); |
242 | /* Clear the remaining part of the page */ |
243 | memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); |
244 | flush_dcache_page(page); |
245 | kunmap_atomic(kaddr, KM_USER0); |
246 | |
247 | SetPageUptodate(page); |
248 | |
249 | return 0; |
250 | } |
251 | |
252 | static int ocfs2_readpage_inline(struct inode *inode, struct page *page) |
253 | { |
254 | int ret; |
255 | struct buffer_head *di_bh = NULL; |
256 | |
257 | BUG_ON(!PageLocked(page)); |
258 | BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); |
259 | |
260 | ret = ocfs2_read_inode_block(inode, &di_bh); |
261 | if (ret) { |
262 | mlog_errno(ret); |
263 | goto out; |
264 | } |
265 | |
266 | ret = ocfs2_read_inline_data(inode, page, di_bh); |
267 | out: |
268 | unlock_page(page); |
269 | |
270 | brelse(di_bh); |
271 | return ret; |
272 | } |
273 | |
274 | static int ocfs2_readpage(struct file *file, struct page *page) |
275 | { |
276 | struct inode *inode = page->mapping->host; |
277 | struct ocfs2_inode_info *oi = OCFS2_I(inode); |
278 | loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; |
279 | int ret, unlock = 1; |
280 | |
281 | trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, |
282 | (page ? page->index : 0)); |
283 | |
284 | ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); |
285 | if (ret != 0) { |
286 | if (ret == AOP_TRUNCATED_PAGE) |
287 | unlock = 0; |
288 | mlog_errno(ret); |
289 | goto out; |
290 | } |
291 | |
292 | if (down_read_trylock(&oi->ip_alloc_sem) == 0) { |
293 | ret = AOP_TRUNCATED_PAGE; |
294 | goto out_inode_unlock; |
295 | } |
296 | |
297 | /* |
298 | * i_size might have just been updated as we grabed the meta lock. We |
299 | * might now be discovering a truncate that hit on another node. |
300 | * block_read_full_page->get_block freaks out if it is asked to read |
301 | * beyond the end of a file, so we check here. Callers |
302 | * (generic_file_read, vm_ops->fault) are clever enough to check i_size |
303 | * and notice that the page they just read isn't needed. |
304 | * |
305 | * XXX sys_readahead() seems to get that wrong? |
306 | */ |
307 | if (start >= i_size_read(inode)) { |
308 | zero_user(page, 0, PAGE_SIZE); |
309 | SetPageUptodate(page); |
310 | ret = 0; |
311 | goto out_alloc; |
312 | } |
313 | |
314 | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) |
315 | ret = ocfs2_readpage_inline(inode, page); |
316 | else |
317 | ret = block_read_full_page(page, ocfs2_get_block); |
318 | unlock = 0; |
319 | |
320 | out_alloc: |
321 | up_read(&OCFS2_I(inode)->ip_alloc_sem); |
322 | out_inode_unlock: |
323 | ocfs2_inode_unlock(inode, 0); |
324 | out: |
325 | if (unlock) |
326 | unlock_page(page); |
327 | return ret; |
328 | } |
329 | |
330 | /* |
331 | * This is used only for read-ahead. Failures or difficult to handle |
332 | * situations are safe to ignore. |
333 | * |
334 | * Right now, we don't bother with BH_Boundary - in-inode extent lists |
335 | * are quite large (243 extents on 4k blocks), so most inodes don't |
336 | * grow out to a tree. If need be, detecting boundary extents could |
337 | * trivially be added in a future version of ocfs2_get_block(). |
338 | */ |
339 | static int ocfs2_readpages(struct file *filp, struct address_space *mapping, |
340 | struct list_head *pages, unsigned nr_pages) |
341 | { |
342 | int ret, err = -EIO; |
343 | struct inode *inode = mapping->host; |
344 | struct ocfs2_inode_info *oi = OCFS2_I(inode); |
345 | loff_t start; |
346 | struct page *last; |
347 | |
348 | /* |
349 | * Use the nonblocking flag for the dlm code to avoid page |
350 | * lock inversion, but don't bother with retrying. |
351 | */ |
352 | ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); |
353 | if (ret) |
354 | return err; |
355 | |
356 | if (down_read_trylock(&oi->ip_alloc_sem) == 0) { |
357 | ocfs2_inode_unlock(inode, 0); |
358 | return err; |
359 | } |
360 | |
361 | /* |
362 | * Don't bother with inline-data. There isn't anything |
363 | * to read-ahead in that case anyway... |
364 | */ |
365 | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) |
366 | goto out_unlock; |
367 | |
368 | /* |
369 | * Check whether a remote node truncated this file - we just |
370 | * drop out in that case as it's not worth handling here. |
371 | */ |
372 | last = list_entry(pages->prev, struct page, lru); |
373 | start = (loff_t)last->index << PAGE_CACHE_SHIFT; |
374 | if (start >= i_size_read(inode)) |
375 | goto out_unlock; |
376 | |
377 | err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); |
378 | |
379 | out_unlock: |
380 | up_read(&oi->ip_alloc_sem); |
381 | ocfs2_inode_unlock(inode, 0); |
382 | |
383 | return err; |
384 | } |
385 | |
386 | /* Note: Because we don't support holes, our allocation has |
387 | * already happened (allocation writes zeros to the file data) |
388 | * so we don't have to worry about ordered writes in |
389 | * ocfs2_writepage. |
390 | * |
391 | * ->writepage is called during the process of invalidating the page cache |
392 | * during blocked lock processing. It can't block on any cluster locks |
393 | * to during block mapping. It's relying on the fact that the block |
394 | * mapping can't have disappeared under the dirty pages that it is |
395 | * being asked to write back. |
396 | */ |
397 | static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) |
398 | { |
399 | trace_ocfs2_writepage( |
400 | (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, |
401 | page->index); |
402 | |
403 | return block_write_full_page(page, ocfs2_get_block, wbc); |
404 | } |
405 | |
406 | /* Taken from ext3. We don't necessarily need the full blown |
407 | * functionality yet, but IMHO it's better to cut and paste the whole |
408 | * thing so we can avoid introducing our own bugs (and easily pick up |
409 | * their fixes when they happen) --Mark */ |
410 | int walk_page_buffers( handle_t *handle, |
411 | struct buffer_head *head, |
412 | unsigned from, |
413 | unsigned to, |
414 | int *partial, |
415 | int (*fn)( handle_t *handle, |
416 | struct buffer_head *bh)) |
417 | { |
418 | struct buffer_head *bh; |
419 | unsigned block_start, block_end; |
420 | unsigned blocksize = head->b_size; |
421 | int err, ret = 0; |
422 | struct buffer_head *next; |
423 | |
424 | for ( bh = head, block_start = 0; |
425 | ret == 0 && (bh != head || !block_start); |
426 | block_start = block_end, bh = next) |
427 | { |
428 | next = bh->b_this_page; |
429 | block_end = block_start + blocksize; |
430 | if (block_end <= from || block_start >= to) { |
431 | if (partial && !buffer_uptodate(bh)) |
432 | *partial = 1; |
433 | continue; |
434 | } |
435 | err = (*fn)(handle, bh); |
436 | if (!ret) |
437 | ret = err; |
438 | } |
439 | return ret; |
440 | } |
441 | |
442 | static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) |
443 | { |
444 | sector_t status; |
445 | u64 p_blkno = 0; |
446 | int err = 0; |
447 | struct inode *inode = mapping->host; |
448 | |
449 | trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, |
450 | (unsigned long long)block); |
451 | |
452 | /* We don't need to lock journal system files, since they aren't |
453 | * accessed concurrently from multiple nodes. |
454 | */ |
455 | if (!INODE_JOURNAL(inode)) { |
456 | err = ocfs2_inode_lock(inode, NULL, 0); |
457 | if (err) { |
458 | if (err != -ENOENT) |
459 | mlog_errno(err); |
460 | goto bail; |
461 | } |
462 | down_read(&OCFS2_I(inode)->ip_alloc_sem); |
463 | } |
464 | |
465 | if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) |
466 | err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, |
467 | NULL); |
468 | |
469 | if (!INODE_JOURNAL(inode)) { |
470 | up_read(&OCFS2_I(inode)->ip_alloc_sem); |
471 | ocfs2_inode_unlock(inode, 0); |
472 | } |
473 | |
474 | if (err) { |
475 | mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", |
476 | (unsigned long long)block); |
477 | mlog_errno(err); |
478 | goto bail; |
479 | } |
480 | |
481 | bail: |
482 | status = err ? 0 : p_blkno; |
483 | |
484 | return status; |
485 | } |
486 | |
487 | /* |
488 | * TODO: Make this into a generic get_blocks function. |
489 | * |
490 | * From do_direct_io in direct-io.c: |
491 | * "So what we do is to permit the ->get_blocks function to populate |
492 | * bh.b_size with the size of IO which is permitted at this offset and |
493 | * this i_blkbits." |
494 | * |
495 | * This function is called directly from get_more_blocks in direct-io.c. |
496 | * |
497 | * called like this: dio->get_blocks(dio->inode, fs_startblk, |
498 | * fs_count, map_bh, dio->rw == WRITE); |
499 | * |
500 | * Note that we never bother to allocate blocks here, and thus ignore the |
501 | * create argument. |
502 | */ |
503 | static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, |
504 | struct buffer_head *bh_result, int create) |
505 | { |
506 | int ret; |
507 | u64 p_blkno, inode_blocks, contig_blocks; |
508 | unsigned int ext_flags; |
509 | unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; |
510 | unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; |
511 | |
512 | /* This function won't even be called if the request isn't all |
513 | * nicely aligned and of the right size, so there's no need |
514 | * for us to check any of that. */ |
515 | |
516 | inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); |
517 | |
518 | /* This figures out the size of the next contiguous block, and |
519 | * our logical offset */ |
520 | ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, |
521 | &contig_blocks, &ext_flags); |
522 | if (ret) { |
523 | mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", |
524 | (unsigned long long)iblock); |
525 | ret = -EIO; |
526 | goto bail; |
527 | } |
528 | |
529 | /* We should already CoW the refcounted extent in case of create. */ |
530 | BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); |
531 | |
532 | /* |
533 | * get_more_blocks() expects us to describe a hole by clearing |
534 | * the mapped bit on bh_result(). |
535 | * |
536 | * Consider an unwritten extent as a hole. |
537 | */ |
538 | if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) |
539 | map_bh(bh_result, inode->i_sb, p_blkno); |
540 | else |
541 | clear_buffer_mapped(bh_result); |
542 | |
543 | /* make sure we don't map more than max_blocks blocks here as |
544 | that's all the kernel will handle at this point. */ |
545 | if (max_blocks < contig_blocks) |
546 | contig_blocks = max_blocks; |
547 | bh_result->b_size = contig_blocks << blocksize_bits; |
548 | bail: |
549 | return ret; |
550 | } |
551 | |
552 | /* |
553 | * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're |
554 | * particularly interested in the aio/dio case. Like the core uses |
555 | * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from |
556 | * truncation on another. |
557 | */ |
558 | static void ocfs2_dio_end_io(struct kiocb *iocb, |
559 | loff_t offset, |
560 | ssize_t bytes, |
561 | void *private, |
562 | int ret, |
563 | bool is_async) |
564 | { |
565 | struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; |
566 | int level; |
567 | |
568 | /* this io's submitter should not have unlocked this before we could */ |
569 | BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); |
570 | |
571 | if (ocfs2_iocb_is_sem_locked(iocb)) { |
572 | up_read(&inode->i_alloc_sem); |
573 | ocfs2_iocb_clear_sem_locked(iocb); |
574 | } |
575 | |
576 | ocfs2_iocb_clear_rw_locked(iocb); |
577 | |
578 | level = ocfs2_iocb_rw_locked_level(iocb); |
579 | ocfs2_rw_unlock(inode, level); |
580 | |
581 | if (is_async) |
582 | aio_complete(iocb, ret, 0); |
583 | } |
584 | |
585 | /* |
586 | * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen |
587 | * from ext3. PageChecked() bits have been removed as OCFS2 does not |
588 | * do journalled data. |
589 | */ |
590 | static void ocfs2_invalidatepage(struct page *page, unsigned long offset) |
591 | { |
592 | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; |
593 | |
594 | jbd2_journal_invalidatepage(journal, page, offset); |
595 | } |
596 | |
597 | static int ocfs2_releasepage(struct page *page, gfp_t wait) |
598 | { |
599 | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; |
600 | |
601 | if (!page_has_buffers(page)) |
602 | return 0; |
603 | return jbd2_journal_try_to_free_buffers(journal, page, wait); |
604 | } |
605 | |
606 | static ssize_t ocfs2_direct_IO(int rw, |
607 | struct kiocb *iocb, |
608 | const struct iovec *iov, |
609 | loff_t offset, |
610 | unsigned long nr_segs) |
611 | { |
612 | struct file *file = iocb->ki_filp; |
613 | struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; |
614 | |
615 | /* |
616 | * Fallback to buffered I/O if we see an inode without |
617 | * extents. |
618 | */ |
619 | if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) |
620 | return 0; |
621 | |
622 | /* Fallback to buffered I/O if we are appending. */ |
623 | if (i_size_read(inode) <= offset) |
624 | return 0; |
625 | |
626 | return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, |
627 | iov, offset, nr_segs, |
628 | ocfs2_direct_IO_get_blocks, |
629 | ocfs2_dio_end_io, NULL, 0); |
630 | } |
631 | |
632 | static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, |
633 | u32 cpos, |
634 | unsigned int *start, |
635 | unsigned int *end) |
636 | { |
637 | unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; |
638 | |
639 | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { |
640 | unsigned int cpp; |
641 | |
642 | cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); |
643 | |
644 | cluster_start = cpos % cpp; |
645 | cluster_start = cluster_start << osb->s_clustersize_bits; |
646 | |
647 | cluster_end = cluster_start + osb->s_clustersize; |
648 | } |
649 | |
650 | BUG_ON(cluster_start > PAGE_SIZE); |
651 | BUG_ON(cluster_end > PAGE_SIZE); |
652 | |
653 | if (start) |
654 | *start = cluster_start; |
655 | if (end) |
656 | *end = cluster_end; |
657 | } |
658 | |
659 | /* |
660 | * 'from' and 'to' are the region in the page to avoid zeroing. |
661 | * |
662 | * If pagesize > clustersize, this function will avoid zeroing outside |
663 | * of the cluster boundary. |
664 | * |
665 | * from == to == 0 is code for "zero the entire cluster region" |
666 | */ |
667 | static void ocfs2_clear_page_regions(struct page *page, |
668 | struct ocfs2_super *osb, u32 cpos, |
669 | unsigned from, unsigned to) |
670 | { |
671 | void *kaddr; |
672 | unsigned int cluster_start, cluster_end; |
673 | |
674 | ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); |
675 | |
676 | kaddr = kmap_atomic(page, KM_USER0); |
677 | |
678 | if (from || to) { |
679 | if (from > cluster_start) |
680 | memset(kaddr + cluster_start, 0, from - cluster_start); |
681 | if (to < cluster_end) |
682 | memset(kaddr + to, 0, cluster_end - to); |
683 | } else { |
684 | memset(kaddr + cluster_start, 0, cluster_end - cluster_start); |
685 | } |
686 | |
687 | kunmap_atomic(kaddr, KM_USER0); |
688 | } |
689 | |
690 | /* |
691 | * Nonsparse file systems fully allocate before we get to the write |
692 | * code. This prevents ocfs2_write() from tagging the write as an |
693 | * allocating one, which means ocfs2_map_page_blocks() might try to |
694 | * read-in the blocks at the tail of our file. Avoid reading them by |
695 | * testing i_size against each block offset. |
696 | */ |
697 | static int ocfs2_should_read_blk(struct inode *inode, struct page *page, |
698 | unsigned int block_start) |
699 | { |
700 | u64 offset = page_offset(page) + block_start; |
701 | |
702 | if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) |
703 | return 1; |
704 | |
705 | if (i_size_read(inode) > offset) |
706 | return 1; |
707 | |
708 | return 0; |
709 | } |
710 | |
711 | /* |
712 | * Some of this taken from __block_write_begin(). We already have our |
713 | * mapping by now though, and the entire write will be allocating or |
714 | * it won't, so not much need to use BH_New. |
715 | * |
716 | * This will also skip zeroing, which is handled externally. |
717 | */ |
718 | int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, |
719 | struct inode *inode, unsigned int from, |
720 | unsigned int to, int new) |
721 | { |
722 | int ret = 0; |
723 | struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; |
724 | unsigned int block_end, block_start; |
725 | unsigned int bsize = 1 << inode->i_blkbits; |
726 | |
727 | if (!page_has_buffers(page)) |
728 | create_empty_buffers(page, bsize, 0); |
729 | |
730 | head = page_buffers(page); |
731 | for (bh = head, block_start = 0; bh != head || !block_start; |
732 | bh = bh->b_this_page, block_start += bsize) { |
733 | block_end = block_start + bsize; |
734 | |
735 | clear_buffer_new(bh); |
736 | |
737 | /* |
738 | * Ignore blocks outside of our i/o range - |
739 | * they may belong to unallocated clusters. |
740 | */ |
741 | if (block_start >= to || block_end <= from) { |
742 | if (PageUptodate(page)) |
743 | set_buffer_uptodate(bh); |
744 | continue; |
745 | } |
746 | |
747 | /* |
748 | * For an allocating write with cluster size >= page |
749 | * size, we always write the entire page. |
750 | */ |
751 | if (new) |
752 | set_buffer_new(bh); |
753 | |
754 | if (!buffer_mapped(bh)) { |
755 | map_bh(bh, inode->i_sb, *p_blkno); |
756 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); |
757 | } |
758 | |
759 | if (PageUptodate(page)) { |
760 | if (!buffer_uptodate(bh)) |
761 | set_buffer_uptodate(bh); |
762 | } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
763 | !buffer_new(bh) && |
764 | ocfs2_should_read_blk(inode, page, block_start) && |
765 | (block_start < from || block_end > to)) { |
766 | ll_rw_block(READ, 1, &bh); |
767 | *wait_bh++=bh; |
768 | } |
769 | |
770 | *p_blkno = *p_blkno + 1; |
771 | } |
772 | |
773 | /* |
774 | * If we issued read requests - let them complete. |
775 | */ |
776 | while(wait_bh > wait) { |
777 | wait_on_buffer(*--wait_bh); |
778 | if (!buffer_uptodate(*wait_bh)) |
779 | ret = -EIO; |
780 | } |
781 | |
782 | if (ret == 0 || !new) |
783 | return ret; |
784 | |
785 | /* |
786 | * If we get -EIO above, zero out any newly allocated blocks |
787 | * to avoid exposing stale data. |
788 | */ |
789 | bh = head; |
790 | block_start = 0; |
791 | do { |
792 | block_end = block_start + bsize; |
793 | if (block_end <= from) |
794 | goto next_bh; |
795 | if (block_start >= to) |
796 | break; |
797 | |
798 | zero_user(page, block_start, bh->b_size); |
799 | set_buffer_uptodate(bh); |
800 | mark_buffer_dirty(bh); |
801 | |
802 | next_bh: |
803 | block_start = block_end; |
804 | bh = bh->b_this_page; |
805 | } while (bh != head); |
806 | |
807 | return ret; |
808 | } |
809 | |
810 | #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) |
811 | #define OCFS2_MAX_CTXT_PAGES 1 |
812 | #else |
813 | #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) |
814 | #endif |
815 | |
816 | #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) |
817 | |
818 | /* |
819 | * Describe the state of a single cluster to be written to. |
820 | */ |
821 | struct ocfs2_write_cluster_desc { |
822 | u32 c_cpos; |
823 | u32 c_phys; |
824 | /* |
825 | * Give this a unique field because c_phys eventually gets |
826 | * filled. |
827 | */ |
828 | unsigned c_new; |
829 | unsigned c_unwritten; |
830 | unsigned c_needs_zero; |
831 | }; |
832 | |
833 | struct ocfs2_write_ctxt { |
834 | /* Logical cluster position / len of write */ |
835 | u32 w_cpos; |
836 | u32 w_clen; |
837 | |
838 | /* First cluster allocated in a nonsparse extend */ |
839 | u32 w_first_new_cpos; |
840 | |
841 | struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; |
842 | |
843 | /* |
844 | * This is true if page_size > cluster_size. |
845 | * |
846 | * It triggers a set of special cases during write which might |
847 | * have to deal with allocating writes to partial pages. |
848 | */ |
849 | unsigned int w_large_pages; |
850 | |
851 | /* |
852 | * Pages involved in this write. |
853 | * |
854 | * w_target_page is the page being written to by the user. |
855 | * |
856 | * w_pages is an array of pages which always contains |
857 | * w_target_page, and in the case of an allocating write with |
858 | * page_size < cluster size, it will contain zero'd and mapped |
859 | * pages adjacent to w_target_page which need to be written |
860 | * out in so that future reads from that region will get |
861 | * zero's. |
862 | */ |
863 | unsigned int w_num_pages; |
864 | struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; |
865 | struct page *w_target_page; |
866 | |
867 | /* |
868 | * ocfs2_write_end() uses this to know what the real range to |
869 | * write in the target should be. |
870 | */ |
871 | unsigned int w_target_from; |
872 | unsigned int w_target_to; |
873 | |
874 | /* |
875 | * We could use journal_current_handle() but this is cleaner, |
876 | * IMHO -Mark |
877 | */ |
878 | handle_t *w_handle; |
879 | |
880 | struct buffer_head *w_di_bh; |
881 | |
882 | struct ocfs2_cached_dealloc_ctxt w_dealloc; |
883 | }; |
884 | |
885 | void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) |
886 | { |
887 | int i; |
888 | |
889 | for(i = 0; i < num_pages; i++) { |
890 | if (pages[i]) { |
891 | unlock_page(pages[i]); |
892 | mark_page_accessed(pages[i]); |
893 | page_cache_release(pages[i]); |
894 | } |
895 | } |
896 | } |
897 | |
898 | static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) |
899 | { |
900 | ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); |
901 | |
902 | brelse(wc->w_di_bh); |
903 | kfree(wc); |
904 | } |
905 | |
906 | static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, |
907 | struct ocfs2_super *osb, loff_t pos, |
908 | unsigned len, struct buffer_head *di_bh) |
909 | { |
910 | u32 cend; |
911 | struct ocfs2_write_ctxt *wc; |
912 | |
913 | wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); |
914 | if (!wc) |
915 | return -ENOMEM; |
916 | |
917 | wc->w_cpos = pos >> osb->s_clustersize_bits; |
918 | wc->w_first_new_cpos = UINT_MAX; |
919 | cend = (pos + len - 1) >> osb->s_clustersize_bits; |
920 | wc->w_clen = cend - wc->w_cpos + 1; |
921 | get_bh(di_bh); |
922 | wc->w_di_bh = di_bh; |
923 | |
924 | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) |
925 | wc->w_large_pages = 1; |
926 | else |
927 | wc->w_large_pages = 0; |
928 | |
929 | ocfs2_init_dealloc_ctxt(&wc->w_dealloc); |
930 | |
931 | *wcp = wc; |
932 | |
933 | return 0; |
934 | } |
935 | |
936 | /* |
937 | * If a page has any new buffers, zero them out here, and mark them uptodate |
938 | * and dirty so they'll be written out (in order to prevent uninitialised |
939 | * block data from leaking). And clear the new bit. |
940 | */ |
941 | static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) |
942 | { |
943 | unsigned int block_start, block_end; |
944 | struct buffer_head *head, *bh; |
945 | |
946 | BUG_ON(!PageLocked(page)); |
947 | if (!page_has_buffers(page)) |
948 | return; |
949 | |
950 | bh = head = page_buffers(page); |
951 | block_start = 0; |
952 | do { |
953 | block_end = block_start + bh->b_size; |
954 | |
955 | if (buffer_new(bh)) { |
956 | if (block_end > from && block_start < to) { |
957 | if (!PageUptodate(page)) { |
958 | unsigned start, end; |
959 | |
960 | start = max(from, block_start); |
961 | end = min(to, block_end); |
962 | |
963 | zero_user_segment(page, start, end); |
964 | set_buffer_uptodate(bh); |
965 | } |
966 | |
967 | clear_buffer_new(bh); |
968 | mark_buffer_dirty(bh); |
969 | } |
970 | } |
971 | |
972 | block_start = block_end; |
973 | bh = bh->b_this_page; |
974 | } while (bh != head); |
975 | } |
976 | |
977 | /* |
978 | * Only called when we have a failure during allocating write to write |
979 | * zero's to the newly allocated region. |
980 | */ |
981 | static void ocfs2_write_failure(struct inode *inode, |
982 | struct ocfs2_write_ctxt *wc, |
983 | loff_t user_pos, unsigned user_len) |
984 | { |
985 | int i; |
986 | unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), |
987 | to = user_pos + user_len; |
988 | struct page *tmppage; |
989 | |
990 | ocfs2_zero_new_buffers(wc->w_target_page, from, to); |
991 | |
992 | for(i = 0; i < wc->w_num_pages; i++) { |
993 | tmppage = wc->w_pages[i]; |
994 | |
995 | if (page_has_buffers(tmppage)) { |
996 | if (ocfs2_should_order_data(inode)) |
997 | ocfs2_jbd2_file_inode(wc->w_handle, inode); |
998 | |
999 | block_commit_write(tmppage, from, to); |
1000 | } |
1001 | } |
1002 | } |
1003 | |
1004 | static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, |
1005 | struct ocfs2_write_ctxt *wc, |
1006 | struct page *page, u32 cpos, |
1007 | loff_t user_pos, unsigned user_len, |
1008 | int new) |
1009 | { |
1010 | int ret; |
1011 | unsigned int map_from = 0, map_to = 0; |
1012 | unsigned int cluster_start, cluster_end; |
1013 | unsigned int user_data_from = 0, user_data_to = 0; |
1014 | |
1015 | ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, |
1016 | &cluster_start, &cluster_end); |
1017 | |
1018 | /* treat the write as new if the a hole/lseek spanned across |
1019 | * the page boundary. |
1020 | */ |
1021 | new = new | ((i_size_read(inode) <= page_offset(page)) && |
1022 | (page_offset(page) <= user_pos)); |
1023 | |
1024 | if (page == wc->w_target_page) { |
1025 | map_from = user_pos & (PAGE_CACHE_SIZE - 1); |
1026 | map_to = map_from + user_len; |
1027 | |
1028 | if (new) |
1029 | ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
1030 | cluster_start, cluster_end, |
1031 | new); |
1032 | else |
1033 | ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
1034 | map_from, map_to, new); |
1035 | if (ret) { |
1036 | mlog_errno(ret); |
1037 | goto out; |
1038 | } |
1039 | |
1040 | user_data_from = map_from; |
1041 | user_data_to = map_to; |
1042 | if (new) { |
1043 | map_from = cluster_start; |
1044 | map_to = cluster_end; |
1045 | } |
1046 | } else { |
1047 | /* |
1048 | * If we haven't allocated the new page yet, we |
1049 | * shouldn't be writing it out without copying user |
1050 | * data. This is likely a math error from the caller. |
1051 | */ |
1052 | BUG_ON(!new); |
1053 | |
1054 | map_from = cluster_start; |
1055 | map_to = cluster_end; |
1056 | |
1057 | ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
1058 | cluster_start, cluster_end, new); |
1059 | if (ret) { |
1060 | mlog_errno(ret); |
1061 | goto out; |
1062 | } |
1063 | } |
1064 | |
1065 | /* |
1066 | * Parts of newly allocated pages need to be zero'd. |
1067 | * |
1068 | * Above, we have also rewritten 'to' and 'from' - as far as |
1069 | * the rest of the function is concerned, the entire cluster |
1070 | * range inside of a page needs to be written. |
1071 | * |
1072 | * We can skip this if the page is up to date - it's already |
1073 | * been zero'd from being read in as a hole. |
1074 | */ |
1075 | if (new && !PageUptodate(page)) |
1076 | ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), |
1077 | cpos, user_data_from, user_data_to); |
1078 | |
1079 | flush_dcache_page(page); |
1080 | |
1081 | out: |
1082 | return ret; |
1083 | } |
1084 | |
1085 | /* |
1086 | * This function will only grab one clusters worth of pages. |
1087 | */ |
1088 | static int ocfs2_grab_pages_for_write(struct address_space *mapping, |
1089 | struct ocfs2_write_ctxt *wc, |
1090 | u32 cpos, loff_t user_pos, |
1091 | unsigned user_len, int new, |
1092 | struct page *mmap_page) |
1093 | { |
1094 | int ret = 0, i; |
1095 | unsigned long start, target_index, end_index, index; |
1096 | struct inode *inode = mapping->host; |
1097 | loff_t last_byte; |
1098 | |
1099 | target_index = user_pos >> PAGE_CACHE_SHIFT; |
1100 | |
1101 | /* |
1102 | * Figure out how many pages we'll be manipulating here. For |
1103 | * non allocating write, we just change the one |
1104 | * page. Otherwise, we'll need a whole clusters worth. If we're |
1105 | * writing past i_size, we only need enough pages to cover the |
1106 | * last page of the write. |
1107 | */ |
1108 | if (new) { |
1109 | wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); |
1110 | start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); |
1111 | /* |
1112 | * We need the index *past* the last page we could possibly |
1113 | * touch. This is the page past the end of the write or |
1114 | * i_size, whichever is greater. |
1115 | */ |
1116 | last_byte = max(user_pos + user_len, i_size_read(inode)); |
1117 | BUG_ON(last_byte < 1); |
1118 | end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; |
1119 | if ((start + wc->w_num_pages) > end_index) |
1120 | wc->w_num_pages = end_index - start; |
1121 | } else { |
1122 | wc->w_num_pages = 1; |
1123 | start = target_index; |
1124 | } |
1125 | |
1126 | for(i = 0; i < wc->w_num_pages; i++) { |
1127 | index = start + i; |
1128 | |
1129 | if (index == target_index && mmap_page) { |
1130 | /* |
1131 | * ocfs2_pagemkwrite() is a little different |
1132 | * and wants us to directly use the page |
1133 | * passed in. |
1134 | */ |
1135 | lock_page(mmap_page); |
1136 | |
1137 | if (mmap_page->mapping != mapping) { |
1138 | unlock_page(mmap_page); |
1139 | /* |
1140 | * Sanity check - the locking in |
1141 | * ocfs2_pagemkwrite() should ensure |
1142 | * that this code doesn't trigger. |
1143 | */ |
1144 | ret = -EINVAL; |
1145 | mlog_errno(ret); |
1146 | goto out; |
1147 | } |
1148 | |
1149 | page_cache_get(mmap_page); |
1150 | wc->w_pages[i] = mmap_page; |
1151 | } else { |
1152 | wc->w_pages[i] = find_or_create_page(mapping, index, |
1153 | GFP_NOFS); |
1154 | if (!wc->w_pages[i]) { |
1155 | ret = -ENOMEM; |
1156 | mlog_errno(ret); |
1157 | goto out; |
1158 | } |
1159 | } |
1160 | |
1161 | if (index == target_index) |
1162 | wc->w_target_page = wc->w_pages[i]; |
1163 | } |
1164 | out: |
1165 | return ret; |
1166 | } |
1167 | |
1168 | /* |
1169 | * Prepare a single cluster for write one cluster into the file. |
1170 | */ |
1171 | static int ocfs2_write_cluster(struct address_space *mapping, |
1172 | u32 phys, unsigned int unwritten, |
1173 | unsigned int should_zero, |
1174 | struct ocfs2_alloc_context *data_ac, |
1175 | struct ocfs2_alloc_context *meta_ac, |
1176 | struct ocfs2_write_ctxt *wc, u32 cpos, |
1177 | loff_t user_pos, unsigned user_len) |
1178 | { |
1179 | int ret, i, new; |
1180 | u64 v_blkno, p_blkno; |
1181 | struct inode *inode = mapping->host; |
1182 | struct ocfs2_extent_tree et; |
1183 | |
1184 | new = phys == 0 ? 1 : 0; |
1185 | if (new) { |
1186 | u32 tmp_pos; |
1187 | |
1188 | /* |
1189 | * This is safe to call with the page locks - it won't take |
1190 | * any additional semaphores or cluster locks. |
1191 | */ |
1192 | tmp_pos = cpos; |
1193 | ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, |
1194 | &tmp_pos, 1, 0, wc->w_di_bh, |
1195 | wc->w_handle, data_ac, |
1196 | meta_ac, NULL); |
1197 | /* |
1198 | * This shouldn't happen because we must have already |
1199 | * calculated the correct meta data allocation required. The |
1200 | * internal tree allocation code should know how to increase |
1201 | * transaction credits itself. |
1202 | * |
1203 | * If need be, we could handle -EAGAIN for a |
1204 | * RESTART_TRANS here. |
1205 | */ |
1206 | mlog_bug_on_msg(ret == -EAGAIN, |
1207 | "Inode %llu: EAGAIN return during allocation.\n", |
1208 | (unsigned long long)OCFS2_I(inode)->ip_blkno); |
1209 | if (ret < 0) { |
1210 | mlog_errno(ret); |
1211 | goto out; |
1212 | } |
1213 | } else if (unwritten) { |
1214 | ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), |
1215 | wc->w_di_bh); |
1216 | ret = ocfs2_mark_extent_written(inode, &et, |
1217 | wc->w_handle, cpos, 1, phys, |
1218 | meta_ac, &wc->w_dealloc); |
1219 | if (ret < 0) { |
1220 | mlog_errno(ret); |
1221 | goto out; |
1222 | } |
1223 | } |
1224 | |
1225 | if (should_zero) |
1226 | v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); |
1227 | else |
1228 | v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; |
1229 | |
1230 | /* |
1231 | * The only reason this should fail is due to an inability to |
1232 | * find the extent added. |
1233 | */ |
1234 | ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, |
1235 | NULL); |
1236 | if (ret < 0) { |
1237 | ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " |
1238 | "at logical block %llu", |
1239 | (unsigned long long)OCFS2_I(inode)->ip_blkno, |
1240 | (unsigned long long)v_blkno); |
1241 | goto out; |
1242 | } |
1243 | |
1244 | BUG_ON(p_blkno == 0); |
1245 | |
1246 | for(i = 0; i < wc->w_num_pages; i++) { |
1247 | int tmpret; |
1248 | |
1249 | tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, |
1250 | wc->w_pages[i], cpos, |
1251 | user_pos, user_len, |
1252 | should_zero); |
1253 | if (tmpret) { |
1254 | mlog_errno(tmpret); |
1255 | if (ret == 0) |
1256 | ret = tmpret; |
1257 | } |
1258 | } |
1259 | |
1260 | /* |
1261 | * We only have cleanup to do in case of allocating write. |
1262 | */ |
1263 | if (ret && new) |
1264 | ocfs2_write_failure(inode, wc, user_pos, user_len); |
1265 | |
1266 | out: |
1267 | |
1268 | return ret; |
1269 | } |
1270 | |
1271 | static int ocfs2_write_cluster_by_desc(struct address_space *mapping, |
1272 | struct ocfs2_alloc_context *data_ac, |
1273 | struct ocfs2_alloc_context *meta_ac, |
1274 | struct ocfs2_write_ctxt *wc, |
1275 | loff_t pos, unsigned len) |
1276 | { |
1277 | int ret, i; |
1278 | loff_t cluster_off; |
1279 | unsigned int local_len = len; |
1280 | struct ocfs2_write_cluster_desc *desc; |
1281 | struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); |
1282 | |
1283 | for (i = 0; i < wc->w_clen; i++) { |
1284 | desc = &wc->w_desc[i]; |
1285 | |
1286 | /* |
1287 | * We have to make sure that the total write passed in |
1288 | * doesn't extend past a single cluster. |
1289 | */ |
1290 | local_len = len; |
1291 | cluster_off = pos & (osb->s_clustersize - 1); |
1292 | if ((cluster_off + local_len) > osb->s_clustersize) |
1293 | local_len = osb->s_clustersize - cluster_off; |
1294 | |
1295 | ret = ocfs2_write_cluster(mapping, desc->c_phys, |
1296 | desc->c_unwritten, |
1297 | desc->c_needs_zero, |
1298 | data_ac, meta_ac, |
1299 | wc, desc->c_cpos, pos, local_len); |
1300 | if (ret) { |
1301 | mlog_errno(ret); |
1302 | goto out; |
1303 | } |
1304 | |
1305 | len -= local_len; |
1306 | pos += local_len; |
1307 | } |
1308 | |
1309 | ret = 0; |
1310 | out: |
1311 | return ret; |
1312 | } |
1313 | |
1314 | /* |
1315 | * ocfs2_write_end() wants to know which parts of the target page it |
1316 | * should complete the write on. It's easiest to compute them ahead of |
1317 | * time when a more complete view of the write is available. |
1318 | */ |
1319 | static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, |
1320 | struct ocfs2_write_ctxt *wc, |
1321 | loff_t pos, unsigned len, int alloc) |
1322 | { |
1323 | struct ocfs2_write_cluster_desc *desc; |
1324 | |
1325 | wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); |
1326 | wc->w_target_to = wc->w_target_from + len; |
1327 | |
1328 | if (alloc == 0) |
1329 | return; |
1330 | |
1331 | /* |
1332 | * Allocating write - we may have different boundaries based |
1333 | * on page size and cluster size. |
1334 | * |
1335 | * NOTE: We can no longer compute one value from the other as |
1336 | * the actual write length and user provided length may be |
1337 | * different. |
1338 | */ |
1339 | |
1340 | if (wc->w_large_pages) { |
1341 | /* |
1342 | * We only care about the 1st and last cluster within |
1343 | * our range and whether they should be zero'd or not. Either |
1344 | * value may be extended out to the start/end of a |
1345 | * newly allocated cluster. |
1346 | */ |
1347 | desc = &wc->w_desc[0]; |
1348 | if (desc->c_needs_zero) |
1349 | ocfs2_figure_cluster_boundaries(osb, |
1350 | desc->c_cpos, |
1351 | &wc->w_target_from, |
1352 | NULL); |
1353 | |
1354 | desc = &wc->w_desc[wc->w_clen - 1]; |
1355 | if (desc->c_needs_zero) |
1356 | ocfs2_figure_cluster_boundaries(osb, |
1357 | desc->c_cpos, |
1358 | NULL, |
1359 | &wc->w_target_to); |
1360 | } else { |
1361 | wc->w_target_from = 0; |
1362 | wc->w_target_to = PAGE_CACHE_SIZE; |
1363 | } |
1364 | } |
1365 | |
1366 | /* |
1367 | * Populate each single-cluster write descriptor in the write context |
1368 | * with information about the i/o to be done. |
1369 | * |
1370 | * Returns the number of clusters that will have to be allocated, as |
1371 | * well as a worst case estimate of the number of extent records that |
1372 | * would have to be created during a write to an unwritten region. |
1373 | */ |
1374 | static int ocfs2_populate_write_desc(struct inode *inode, |
1375 | struct ocfs2_write_ctxt *wc, |
1376 | unsigned int *clusters_to_alloc, |
1377 | unsigned int *extents_to_split) |
1378 | { |
1379 | int ret; |
1380 | struct ocfs2_write_cluster_desc *desc; |
1381 | unsigned int num_clusters = 0; |
1382 | unsigned int ext_flags = 0; |
1383 | u32 phys = 0; |
1384 | int i; |
1385 | |
1386 | *clusters_to_alloc = 0; |
1387 | *extents_to_split = 0; |
1388 | |
1389 | for (i = 0; i < wc->w_clen; i++) { |
1390 | desc = &wc->w_desc[i]; |
1391 | desc->c_cpos = wc->w_cpos + i; |
1392 | |
1393 | if (num_clusters == 0) { |
1394 | /* |
1395 | * Need to look up the next extent record. |
1396 | */ |
1397 | ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, |
1398 | &num_clusters, &ext_flags); |
1399 | if (ret) { |
1400 | mlog_errno(ret); |
1401 | goto out; |
1402 | } |
1403 | |
1404 | /* We should already CoW the refcountd extent. */ |
1405 | BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); |
1406 | |
1407 | /* |
1408 | * Assume worst case - that we're writing in |
1409 | * the middle of the extent. |
1410 | * |
1411 | * We can assume that the write proceeds from |
1412 | * left to right, in which case the extent |
1413 | * insert code is smart enough to coalesce the |
1414 | * next splits into the previous records created. |
1415 | */ |
1416 | if (ext_flags & OCFS2_EXT_UNWRITTEN) |
1417 | *extents_to_split = *extents_to_split + 2; |
1418 | } else if (phys) { |
1419 | /* |
1420 | * Only increment phys if it doesn't describe |
1421 | * a hole. |
1422 | */ |
1423 | phys++; |
1424 | } |
1425 | |
1426 | /* |
1427 | * If w_first_new_cpos is < UINT_MAX, we have a non-sparse |
1428 | * file that got extended. w_first_new_cpos tells us |
1429 | * where the newly allocated clusters are so we can |
1430 | * zero them. |
1431 | */ |
1432 | if (desc->c_cpos >= wc->w_first_new_cpos) { |
1433 | BUG_ON(phys == 0); |
1434 | desc->c_needs_zero = 1; |
1435 | } |
1436 | |
1437 | desc->c_phys = phys; |
1438 | if (phys == 0) { |
1439 | desc->c_new = 1; |
1440 | desc->c_needs_zero = 1; |
1441 | *clusters_to_alloc = *clusters_to_alloc + 1; |
1442 | } |
1443 | |
1444 | if (ext_flags & OCFS2_EXT_UNWRITTEN) { |
1445 | desc->c_unwritten = 1; |
1446 | desc->c_needs_zero = 1; |
1447 | } |
1448 | |
1449 | num_clusters--; |
1450 | } |
1451 | |
1452 | ret = 0; |
1453 | out: |
1454 | return ret; |
1455 | } |
1456 | |
1457 | static int ocfs2_write_begin_inline(struct address_space *mapping, |
1458 | struct inode *inode, |
1459 | struct ocfs2_write_ctxt *wc) |
1460 | { |
1461 | int ret; |
1462 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
1463 | struct page *page; |
1464 | handle_t *handle; |
1465 | struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
1466 | |
1467 | page = find_or_create_page(mapping, 0, GFP_NOFS); |
1468 | if (!page) { |
1469 | ret = -ENOMEM; |
1470 | mlog_errno(ret); |
1471 | goto out; |
1472 | } |
1473 | /* |
1474 | * If we don't set w_num_pages then this page won't get unlocked |
1475 | * and freed on cleanup of the write context. |
1476 | */ |
1477 | wc->w_pages[0] = wc->w_target_page = page; |
1478 | wc->w_num_pages = 1; |
1479 | |
1480 | handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); |
1481 | if (IS_ERR(handle)) { |
1482 | ret = PTR_ERR(handle); |
1483 | mlog_errno(ret); |
1484 | goto out; |
1485 | } |
1486 | |
1487 | ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, |
1488 | OCFS2_JOURNAL_ACCESS_WRITE); |
1489 | if (ret) { |
1490 | ocfs2_commit_trans(osb, handle); |
1491 | |
1492 | mlog_errno(ret); |
1493 | goto out; |
1494 | } |
1495 | |
1496 | if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) |
1497 | ocfs2_set_inode_data_inline(inode, di); |
1498 | |
1499 | if (!PageUptodate(page)) { |
1500 | ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); |
1501 | if (ret) { |
1502 | ocfs2_commit_trans(osb, handle); |
1503 | |
1504 | goto out; |
1505 | } |
1506 | } |
1507 | |
1508 | wc->w_handle = handle; |
1509 | out: |
1510 | return ret; |
1511 | } |
1512 | |
1513 | int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) |
1514 | { |
1515 | struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
1516 | |
1517 | if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) |
1518 | return 1; |
1519 | return 0; |
1520 | } |
1521 | |
1522 | static int ocfs2_try_to_write_inline_data(struct address_space *mapping, |
1523 | struct inode *inode, loff_t pos, |
1524 | unsigned len, struct page *mmap_page, |
1525 | struct ocfs2_write_ctxt *wc) |
1526 | { |
1527 | int ret, written = 0; |
1528 | loff_t end = pos + len; |
1529 | struct ocfs2_inode_info *oi = OCFS2_I(inode); |
1530 | struct ocfs2_dinode *di = NULL; |
1531 | |
1532 | trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, |
1533 | len, (unsigned long long)pos, |
1534 | oi->ip_dyn_features); |
1535 | |
1536 | /* |
1537 | * Handle inodes which already have inline data 1st. |
1538 | */ |
1539 | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { |
1540 | if (mmap_page == NULL && |
1541 | ocfs2_size_fits_inline_data(wc->w_di_bh, end)) |
1542 | goto do_inline_write; |
1543 | |
1544 | /* |
1545 | * The write won't fit - we have to give this inode an |
1546 | * inline extent list now. |
1547 | */ |
1548 | ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); |
1549 | if (ret) |
1550 | mlog_errno(ret); |
1551 | goto out; |
1552 | } |
1553 | |
1554 | /* |
1555 | * Check whether the inode can accept inline data. |
1556 | */ |
1557 | if (oi->ip_clusters != 0 || i_size_read(inode) != 0) |
1558 | return 0; |
1559 | |
1560 | /* |
1561 | * Check whether the write can fit. |
1562 | */ |
1563 | di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
1564 | if (mmap_page || |
1565 | end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) |
1566 | return 0; |
1567 | |
1568 | do_inline_write: |
1569 | ret = ocfs2_write_begin_inline(mapping, inode, wc); |
1570 | if (ret) { |
1571 | mlog_errno(ret); |
1572 | goto out; |
1573 | } |
1574 | |
1575 | /* |
1576 | * This signals to the caller that the data can be written |
1577 | * inline. |
1578 | */ |
1579 | written = 1; |
1580 | out: |
1581 | return written ? written : ret; |
1582 | } |
1583 | |
1584 | /* |
1585 | * This function only does anything for file systems which can't |
1586 | * handle sparse files. |
1587 | * |
1588 | * What we want to do here is fill in any hole between the current end |
1589 | * of allocation and the end of our write. That way the rest of the |
1590 | * write path can treat it as an non-allocating write, which has no |
1591 | * special case code for sparse/nonsparse files. |
1592 | */ |
1593 | static int ocfs2_expand_nonsparse_inode(struct inode *inode, |
1594 | struct buffer_head *di_bh, |
1595 | loff_t pos, unsigned len, |
1596 | struct ocfs2_write_ctxt *wc) |
1597 | { |
1598 | int ret; |
1599 | loff_t newsize = pos + len; |
1600 | |
1601 | BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); |
1602 | |
1603 | if (newsize <= i_size_read(inode)) |
1604 | return 0; |
1605 | |
1606 | ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); |
1607 | if (ret) |
1608 | mlog_errno(ret); |
1609 | |
1610 | wc->w_first_new_cpos = |
1611 | ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); |
1612 | |
1613 | return ret; |
1614 | } |
1615 | |
1616 | static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, |
1617 | loff_t pos) |
1618 | { |
1619 | int ret = 0; |
1620 | |
1621 | BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); |
1622 | if (pos > i_size_read(inode)) |
1623 | ret = ocfs2_zero_extend(inode, di_bh, pos); |
1624 | |
1625 | return ret; |
1626 | } |
1627 | |
1628 | /* |
1629 | * Try to flush truncate logs if we can free enough clusters from it. |
1630 | * As for return value, "< 0" means error, "0" no space and "1" means |
1631 | * we have freed enough spaces and let the caller try to allocate again. |
1632 | */ |
1633 | static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, |
1634 | unsigned int needed) |
1635 | { |
1636 | tid_t target; |
1637 | int ret = 0; |
1638 | unsigned int truncated_clusters; |
1639 | |
1640 | mutex_lock(&osb->osb_tl_inode->i_mutex); |
1641 | truncated_clusters = osb->truncated_clusters; |
1642 | mutex_unlock(&osb->osb_tl_inode->i_mutex); |
1643 | |
1644 | /* |
1645 | * Check whether we can succeed in allocating if we free |
1646 | * the truncate log. |
1647 | */ |
1648 | if (truncated_clusters < needed) |
1649 | goto out; |
1650 | |
1651 | ret = ocfs2_flush_truncate_log(osb); |
1652 | if (ret) { |
1653 | mlog_errno(ret); |
1654 | goto out; |
1655 | } |
1656 | |
1657 | if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { |
1658 | jbd2_log_wait_commit(osb->journal->j_journal, target); |
1659 | ret = 1; |
1660 | } |
1661 | out: |
1662 | return ret; |
1663 | } |
1664 | |
1665 | int ocfs2_write_begin_nolock(struct file *filp, |
1666 | struct address_space *mapping, |
1667 | loff_t pos, unsigned len, unsigned flags, |
1668 | struct page **pagep, void **fsdata, |
1669 | struct buffer_head *di_bh, struct page *mmap_page) |
1670 | { |
1671 | int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; |
1672 | unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; |
1673 | struct ocfs2_write_ctxt *wc; |
1674 | struct inode *inode = mapping->host; |
1675 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
1676 | struct ocfs2_dinode *di; |
1677 | struct ocfs2_alloc_context *data_ac = NULL; |
1678 | struct ocfs2_alloc_context *meta_ac = NULL; |
1679 | handle_t *handle; |
1680 | struct ocfs2_extent_tree et; |
1681 | int try_free = 1, ret1; |
1682 | |
1683 | try_again: |
1684 | ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); |
1685 | if (ret) { |
1686 | mlog_errno(ret); |
1687 | return ret; |
1688 | } |
1689 | |
1690 | if (ocfs2_supports_inline_data(osb)) { |
1691 | ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, |
1692 | mmap_page, wc); |
1693 | if (ret == 1) { |
1694 | ret = 0; |
1695 | goto success; |
1696 | } |
1697 | if (ret < 0) { |
1698 | mlog_errno(ret); |
1699 | goto out; |
1700 | } |
1701 | } |
1702 | |
1703 | if (ocfs2_sparse_alloc(osb)) |
1704 | ret = ocfs2_zero_tail(inode, di_bh, pos); |
1705 | else |
1706 | ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, |
1707 | wc); |
1708 | if (ret) { |
1709 | mlog_errno(ret); |
1710 | goto out; |
1711 | } |
1712 | |
1713 | ret = ocfs2_check_range_for_refcount(inode, pos, len); |
1714 | if (ret < 0) { |
1715 | mlog_errno(ret); |
1716 | goto out; |
1717 | } else if (ret == 1) { |
1718 | clusters_need = wc->w_clen; |
1719 | ret = ocfs2_refcount_cow(inode, filp, di_bh, |
1720 | wc->w_cpos, wc->w_clen, UINT_MAX); |
1721 | if (ret) { |
1722 | mlog_errno(ret); |
1723 | goto out; |
1724 | } |
1725 | } |
1726 | |
1727 | ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, |
1728 | &extents_to_split); |
1729 | if (ret) { |
1730 | mlog_errno(ret); |
1731 | goto out; |
1732 | } |
1733 | clusters_need += clusters_to_alloc; |
1734 | |
1735 | di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
1736 | |
1737 | trace_ocfs2_write_begin_nolock( |
1738 | (unsigned long long)OCFS2_I(inode)->ip_blkno, |
1739 | (long long)i_size_read(inode), |
1740 | le32_to_cpu(di->i_clusters), |
1741 | pos, len, flags, mmap_page, |
1742 | clusters_to_alloc, extents_to_split); |
1743 | |
1744 | /* |
1745 | * We set w_target_from, w_target_to here so that |
1746 | * ocfs2_write_end() knows which range in the target page to |
1747 | * write out. An allocation requires that we write the entire |
1748 | * cluster range. |
1749 | */ |
1750 | if (clusters_to_alloc || extents_to_split) { |
1751 | /* |
1752 | * XXX: We are stretching the limits of |
1753 | * ocfs2_lock_allocators(). It greatly over-estimates |
1754 | * the work to be done. |
1755 | */ |
1756 | ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), |
1757 | wc->w_di_bh); |
1758 | ret = ocfs2_lock_allocators(inode, &et, |
1759 | clusters_to_alloc, extents_to_split, |
1760 | &data_ac, &meta_ac); |
1761 | if (ret) { |
1762 | mlog_errno(ret); |
1763 | goto out; |
1764 | } |
1765 | |
1766 | if (data_ac) |
1767 | data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; |
1768 | |
1769 | credits = ocfs2_calc_extend_credits(inode->i_sb, |
1770 | &di->id2.i_list, |
1771 | clusters_to_alloc); |
1772 | |
1773 | } |
1774 | |
1775 | /* |
1776 | * We have to zero sparse allocated clusters, unwritten extent clusters, |
1777 | * and non-sparse clusters we just extended. For non-sparse writes, |
1778 | * we know zeros will only be needed in the first and/or last cluster. |
1779 | */ |
1780 | if (clusters_to_alloc || extents_to_split || |
1781 | (wc->w_clen && (wc->w_desc[0].c_needs_zero || |
1782 | wc->w_desc[wc->w_clen - 1].c_needs_zero))) |
1783 | cluster_of_pages = 1; |
1784 | else |
1785 | cluster_of_pages = 0; |
1786 | |
1787 | ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); |
1788 | |
1789 | handle = ocfs2_start_trans(osb, credits); |
1790 | if (IS_ERR(handle)) { |
1791 | ret = PTR_ERR(handle); |
1792 | mlog_errno(ret); |
1793 | goto out; |
1794 | } |
1795 | |
1796 | wc->w_handle = handle; |
1797 | |
1798 | if (clusters_to_alloc) { |
1799 | ret = dquot_alloc_space_nodirty(inode, |
1800 | ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); |
1801 | if (ret) |
1802 | goto out_commit; |
1803 | } |
1804 | /* |
1805 | * We don't want this to fail in ocfs2_write_end(), so do it |
1806 | * here. |
1807 | */ |
1808 | ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, |
1809 | OCFS2_JOURNAL_ACCESS_WRITE); |
1810 | if (ret) { |
1811 | mlog_errno(ret); |
1812 | goto out_quota; |
1813 | } |
1814 | |
1815 | /* |
1816 | * Fill our page array first. That way we've grabbed enough so |
1817 | * that we can zero and flush if we error after adding the |
1818 | * extent. |
1819 | */ |
1820 | ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, |
1821 | cluster_of_pages, mmap_page); |
1822 | if (ret) { |
1823 | mlog_errno(ret); |
1824 | goto out_quota; |
1825 | } |
1826 | |
1827 | ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, |
1828 | len); |
1829 | if (ret) { |
1830 | mlog_errno(ret); |
1831 | goto out_quota; |
1832 | } |
1833 | |
1834 | if (data_ac) |
1835 | ocfs2_free_alloc_context(data_ac); |
1836 | if (meta_ac) |
1837 | ocfs2_free_alloc_context(meta_ac); |
1838 | |
1839 | success: |
1840 | *pagep = wc->w_target_page; |
1841 | *fsdata = wc; |
1842 | return 0; |
1843 | out_quota: |
1844 | if (clusters_to_alloc) |
1845 | dquot_free_space(inode, |
1846 | ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); |
1847 | out_commit: |
1848 | ocfs2_commit_trans(osb, handle); |
1849 | |
1850 | out: |
1851 | ocfs2_free_write_ctxt(wc); |
1852 | |
1853 | if (data_ac) |
1854 | ocfs2_free_alloc_context(data_ac); |
1855 | if (meta_ac) |
1856 | ocfs2_free_alloc_context(meta_ac); |
1857 | |
1858 | if (ret == -ENOSPC && try_free) { |
1859 | /* |
1860 | * Try to free some truncate log so that we can have enough |
1861 | * clusters to allocate. |
1862 | */ |
1863 | try_free = 0; |
1864 | |
1865 | ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); |
1866 | if (ret1 == 1) |
1867 | goto try_again; |
1868 | |
1869 | if (ret1 < 0) |
1870 | mlog_errno(ret1); |
1871 | } |
1872 | |
1873 | return ret; |
1874 | } |
1875 | |
1876 | static int ocfs2_write_begin(struct file *file, struct address_space *mapping, |
1877 | loff_t pos, unsigned len, unsigned flags, |
1878 | struct page **pagep, void **fsdata) |
1879 | { |
1880 | int ret; |
1881 | struct buffer_head *di_bh = NULL; |
1882 | struct inode *inode = mapping->host; |
1883 | |
1884 | ret = ocfs2_inode_lock(inode, &di_bh, 1); |
1885 | if (ret) { |
1886 | mlog_errno(ret); |
1887 | return ret; |
1888 | } |
1889 | |
1890 | /* |
1891 | * Take alloc sem here to prevent concurrent lookups. That way |
1892 | * the mapping, zeroing and tree manipulation within |
1893 | * ocfs2_write() will be safe against ->readpage(). This |
1894 | * should also serve to lock out allocation from a shared |
1895 | * writeable region. |
1896 | */ |
1897 | down_write(&OCFS2_I(inode)->ip_alloc_sem); |
1898 | |
1899 | ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, |
1900 | fsdata, di_bh, NULL); |
1901 | if (ret) { |
1902 | mlog_errno(ret); |
1903 | goto out_fail; |
1904 | } |
1905 | |
1906 | brelse(di_bh); |
1907 | |
1908 | return 0; |
1909 | |
1910 | out_fail: |
1911 | up_write(&OCFS2_I(inode)->ip_alloc_sem); |
1912 | |
1913 | brelse(di_bh); |
1914 | ocfs2_inode_unlock(inode, 1); |
1915 | |
1916 | return ret; |
1917 | } |
1918 | |
1919 | static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, |
1920 | unsigned len, unsigned *copied, |
1921 | struct ocfs2_dinode *di, |
1922 | struct ocfs2_write_ctxt *wc) |
1923 | { |
1924 | void *kaddr; |
1925 | |
1926 | if (unlikely(*copied < len)) { |
1927 | if (!PageUptodate(wc->w_target_page)) { |
1928 | *copied = 0; |
1929 | return; |
1930 | } |
1931 | } |
1932 | |
1933 | kaddr = kmap_atomic(wc->w_target_page, KM_USER0); |
1934 | memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); |
1935 | kunmap_atomic(kaddr, KM_USER0); |
1936 | |
1937 | trace_ocfs2_write_end_inline( |
1938 | (unsigned long long)OCFS2_I(inode)->ip_blkno, |
1939 | (unsigned long long)pos, *copied, |
1940 | le16_to_cpu(di->id2.i_data.id_count), |
1941 | le16_to_cpu(di->i_dyn_features)); |
1942 | } |
1943 | |
1944 | int ocfs2_write_end_nolock(struct address_space *mapping, |
1945 | loff_t pos, unsigned len, unsigned copied, |
1946 | struct page *page, void *fsdata) |
1947 | { |
1948 | int i; |
1949 | unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); |
1950 | struct inode *inode = mapping->host; |
1951 | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
1952 | struct ocfs2_write_ctxt *wc = fsdata; |
1953 | struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
1954 | handle_t *handle = wc->w_handle; |
1955 | struct page *tmppage; |
1956 | |
1957 | if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { |
1958 | ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); |
1959 | goto out_write_size; |
1960 | } |
1961 | |
1962 | if (unlikely(copied < len)) { |
1963 | if (!PageUptodate(wc->w_target_page)) |
1964 | copied = 0; |
1965 | |
1966 | ocfs2_zero_new_buffers(wc->w_target_page, start+copied, |
1967 | start+len); |
1968 | } |
1969 | flush_dcache_page(wc->w_target_page); |
1970 | |
1971 | for(i = 0; i < wc->w_num_pages; i++) { |
1972 | tmppage = wc->w_pages[i]; |
1973 | |
1974 | if (tmppage == wc->w_target_page) { |
1975 | from = wc->w_target_from; |
1976 | to = wc->w_target_to; |
1977 | |
1978 | BUG_ON(from > PAGE_CACHE_SIZE || |
1979 | to > PAGE_CACHE_SIZE || |
1980 | to < from); |
1981 | } else { |
1982 | /* |
1983 | * Pages adjacent to the target (if any) imply |
1984 | * a hole-filling write in which case we want |
1985 | * to flush their entire range. |
1986 | */ |
1987 | from = 0; |
1988 | to = PAGE_CACHE_SIZE; |
1989 | } |
1990 | |
1991 | if (page_has_buffers(tmppage)) { |
1992 | if (ocfs2_should_order_data(inode)) |
1993 | ocfs2_jbd2_file_inode(wc->w_handle, inode); |
1994 | block_commit_write(tmppage, from, to); |
1995 | } |
1996 | } |
1997 | |
1998 | out_write_size: |
1999 | pos += copied; |
2000 | if (pos > inode->i_size) { |
2001 | i_size_write(inode, pos); |
2002 | mark_inode_dirty(inode); |
2003 | } |
2004 | inode->i_blocks = ocfs2_inode_sector_count(inode); |
2005 | di->i_size = cpu_to_le64((u64)i_size_read(inode)); |
2006 | inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
2007 | di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); |
2008 | di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); |
2009 | ocfs2_journal_dirty(handle, wc->w_di_bh); |
2010 | |
2011 | ocfs2_commit_trans(osb, handle); |
2012 | |
2013 | ocfs2_run_deallocs(osb, &wc->w_dealloc); |
2014 | |
2015 | ocfs2_free_write_ctxt(wc); |
2016 | |
2017 | return copied; |
2018 | } |
2019 | |
2020 | static int ocfs2_write_end(struct file *file, struct address_space *mapping, |
2021 | loff_t pos, unsigned len, unsigned copied, |
2022 | struct page *page, void *fsdata) |
2023 | { |
2024 | int ret; |
2025 | struct inode *inode = mapping->host; |
2026 | |
2027 | ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); |
2028 | |
2029 | up_write(&OCFS2_I(inode)->ip_alloc_sem); |
2030 | ocfs2_inode_unlock(inode, 1); |
2031 | |
2032 | return ret; |
2033 | } |
2034 | |
2035 | const struct address_space_operations ocfs2_aops = { |
2036 | .readpage = ocfs2_readpage, |
2037 | .readpages = ocfs2_readpages, |
2038 | .writepage = ocfs2_writepage, |
2039 | .write_begin = ocfs2_write_begin, |
2040 | .write_end = ocfs2_write_end, |
2041 | .bmap = ocfs2_bmap, |
2042 | .direct_IO = ocfs2_direct_IO, |
2043 | .invalidatepage = ocfs2_invalidatepage, |
2044 | .releasepage = ocfs2_releasepage, |
2045 | .migratepage = buffer_migrate_page, |
2046 | .is_partially_uptodate = block_is_partially_uptodate, |
2047 | .error_remove_page = generic_error_remove_page, |
2048 | }; |
2049 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9