Root/fs/ocfs2/journal.c

1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
31#include <linux/time.h>
32#include <linux/random.h>
33
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "blockcheck.h"
40#include "dir.h"
41#include "dlmglue.h"
42#include "extent_map.h"
43#include "heartbeat.h"
44#include "inode.h"
45#include "journal.h"
46#include "localalloc.h"
47#include "slot_map.h"
48#include "super.h"
49#include "sysfile.h"
50#include "uptodate.h"
51#include "quota.h"
52
53#include "buffer_head_io.h"
54#include "ocfs2_trace.h"
55
56DEFINE_SPINLOCK(trans_inc_lock);
57
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
62                  int node_num, int slot_num);
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67                      int dirty, int replayed);
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69                 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71                 int slot);
72static int ocfs2_commit_thread(void *arg);
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74                        int slot_num,
75                        struct ocfs2_dinode *la_dinode,
76                        struct ocfs2_dinode *tl_dinode,
77                        struct ocfs2_quota_recovery *qrec);
78
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81    return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86    return __ocfs2_wait_on_mount(osb, 1);
87}
88
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95    REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96    REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97    REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101    unsigned int rm_slots;
102    enum ocfs2_replay_state rm_state;
103    unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108    if (!osb->replay_map)
109        return;
110
111    /* If we've already queued the replay, we don't have any more to do */
112    if (osb->replay_map->rm_state == REPLAY_DONE)
113        return;
114
115    osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120    struct ocfs2_replay_map *replay_map;
121    int i, node_num;
122
123    /* If replay map is already set, we don't do it again */
124    if (osb->replay_map)
125        return 0;
126
127    replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128                 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130    if (!replay_map) {
131        mlog_errno(-ENOMEM);
132        return -ENOMEM;
133    }
134
135    spin_lock(&osb->osb_lock);
136
137    replay_map->rm_slots = osb->max_slots;
138    replay_map->rm_state = REPLAY_UNNEEDED;
139
140    /* set rm_replay_slots for offline slot(s) */
141    for (i = 0; i < replay_map->rm_slots; i++) {
142        if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143            replay_map->rm_replay_slots[i] = 1;
144    }
145
146    osb->replay_map = replay_map;
147    spin_unlock(&osb->osb_lock);
148    return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153    struct ocfs2_replay_map *replay_map = osb->replay_map;
154    int i;
155
156    if (!replay_map)
157        return;
158
159    if (replay_map->rm_state != REPLAY_NEEDED)
160        return;
161
162    for (i = 0; i < replay_map->rm_slots; i++)
163        if (replay_map->rm_replay_slots[i])
164            ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165                            NULL, NULL);
166    replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171    struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173    if (!osb->replay_map)
174        return;
175
176    kfree(replay_map);
177    osb->replay_map = NULL;
178}
179
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182    struct ocfs2_recovery_map *rm;
183
184    mutex_init(&osb->recovery_lock);
185    osb->disable_recovery = 0;
186    osb->recovery_thread_task = NULL;
187    init_waitqueue_head(&osb->recovery_event);
188
189    rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190             osb->max_slots * sizeof(unsigned int),
191             GFP_KERNEL);
192    if (!rm) {
193        mlog_errno(-ENOMEM);
194        return -ENOMEM;
195    }
196
197    rm->rm_entries = (unsigned int *)((char *)rm +
198                      sizeof(struct ocfs2_recovery_map));
199    osb->recovery_map = rm;
200
201    return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209    mb();
210    return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215    struct ocfs2_recovery_map *rm;
216
217    /* disable any new recovery threads and wait for any currently
218     * running ones to exit. Do this before setting the vol_state. */
219    mutex_lock(&osb->recovery_lock);
220    osb->disable_recovery = 1;
221    mutex_unlock(&osb->recovery_lock);
222    wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224    /* At this point, we know that no more recovery threads can be
225     * launched, so wait for any recovery completion work to
226     * complete. */
227    flush_workqueue(ocfs2_wq);
228
229    /*
230     * Now that recovery is shut down, and the osb is about to be
231     * freed, the osb_lock is not taken here.
232     */
233    rm = osb->recovery_map;
234    /* XXX: Should we bug if there are dirty entries? */
235
236    kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240                     unsigned int node_num)
241{
242    int i;
243    struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245    assert_spin_locked(&osb->osb_lock);
246
247    for (i = 0; i < rm->rm_used; i++) {
248        if (rm->rm_entries[i] == node_num)
249            return 1;
250    }
251
252    return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257                  unsigned int node_num)
258{
259    struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261    spin_lock(&osb->osb_lock);
262    if (__ocfs2_recovery_map_test(osb, node_num)) {
263        spin_unlock(&osb->osb_lock);
264        return 1;
265    }
266
267    /* XXX: Can this be exploited? Not from o2dlm... */
268    BUG_ON(rm->rm_used >= osb->max_slots);
269
270    rm->rm_entries[rm->rm_used] = node_num;
271    rm->rm_used++;
272    spin_unlock(&osb->osb_lock);
273
274    return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278                     unsigned int node_num)
279{
280    int i;
281    struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283    spin_lock(&osb->osb_lock);
284
285    for (i = 0; i < rm->rm_used; i++) {
286        if (rm->rm_entries[i] == node_num)
287            break;
288    }
289
290    if (i < rm->rm_used) {
291        /* XXX: be careful with the pointer math */
292        memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293            (rm->rm_used - i - 1) * sizeof(unsigned int));
294        rm->rm_used--;
295    }
296
297    spin_unlock(&osb->osb_lock);
298}
299
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302    int status = 0;
303    unsigned int flushed;
304    struct ocfs2_journal *journal = NULL;
305
306    journal = osb->journal;
307
308    /* Flush all pending commits and checkpoint the journal. */
309    down_write(&journal->j_trans_barrier);
310
311    flushed = atomic_read(&journal->j_num_trans);
312    trace_ocfs2_commit_cache_begin(flushed);
313    if (flushed == 0) {
314        up_write(&journal->j_trans_barrier);
315        goto finally;
316    }
317
318    jbd2_journal_lock_updates(journal->j_journal);
319    status = jbd2_journal_flush(journal->j_journal);
320    jbd2_journal_unlock_updates(journal->j_journal);
321    if (status < 0) {
322        up_write(&journal->j_trans_barrier);
323        mlog_errno(status);
324        goto finally;
325    }
326
327    ocfs2_inc_trans_id(journal);
328
329    flushed = atomic_read(&journal->j_num_trans);
330    atomic_set(&journal->j_num_trans, 0);
331    up_write(&journal->j_trans_barrier);
332
333    trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335    ocfs2_wake_downconvert_thread(osb);
336    wake_up(&journal->j_checkpointed);
337finally:
338    return status;
339}
340
341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342{
343    journal_t *journal = osb->journal->j_journal;
344    handle_t *handle;
345
346    BUG_ON(!osb || !osb->journal->j_journal);
347
348    if (ocfs2_is_hard_readonly(osb))
349        return ERR_PTR(-EROFS);
350
351    BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352    BUG_ON(max_buffs <= 0);
353
354    /* Nested transaction? Just return the handle... */
355    if (journal_current_handle())
356        return jbd2_journal_start(journal, max_buffs);
357
358    down_read(&osb->journal->j_trans_barrier);
359
360    handle = jbd2_journal_start(journal, max_buffs);
361    if (IS_ERR(handle)) {
362        up_read(&osb->journal->j_trans_barrier);
363
364        mlog_errno(PTR_ERR(handle));
365
366        if (is_journal_aborted(journal)) {
367            ocfs2_abort(osb->sb, "Detected aborted journal");
368            handle = ERR_PTR(-EROFS);
369        }
370    } else {
371        if (!ocfs2_mount_local(osb))
372            atomic_inc(&(osb->journal->j_num_trans));
373    }
374
375    return handle;
376}
377
378int ocfs2_commit_trans(struct ocfs2_super *osb,
379               handle_t *handle)
380{
381    int ret, nested;
382    struct ocfs2_journal *journal = osb->journal;
383
384    BUG_ON(!handle);
385
386    nested = handle->h_ref > 1;
387    ret = jbd2_journal_stop(handle);
388    if (ret < 0)
389        mlog_errno(ret);
390
391    if (!nested)
392        up_read(&journal->j_trans_barrier);
393
394    return ret;
395}
396
397/*
398 * 'nblocks' is what you want to add to the current transaction.
399 *
400 * This might call jbd2_journal_restart() which will commit dirty buffers
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
405 *
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
409 *
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
413 */
414int ocfs2_extend_trans(handle_t *handle, int nblocks)
415{
416    int status, old_nblocks;
417
418    BUG_ON(!handle);
419    BUG_ON(nblocks < 0);
420
421    if (!nblocks)
422        return 0;
423
424    old_nblocks = handle->h_buffer_credits;
425
426    trace_ocfs2_extend_trans(old_nblocks, nblocks);
427
428#ifdef CONFIG_OCFS2_DEBUG_FS
429    status = 1;
430#else
431    status = jbd2_journal_extend(handle, nblocks);
432    if (status < 0) {
433        mlog_errno(status);
434        goto bail;
435    }
436#endif
437
438    if (status > 0) {
439        trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
440        status = jbd2_journal_restart(handle,
441                          old_nblocks + nblocks);
442        if (status < 0) {
443            mlog_errno(status);
444            goto bail;
445        }
446    }
447
448    status = 0;
449bail:
450    return status;
451}
452
453struct ocfs2_triggers {
454    struct jbd2_buffer_trigger_type ot_triggers;
455    int ot_offset;
456};
457
458static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459{
460    return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461}
462
463static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
464                 struct buffer_head *bh,
465                 void *data, size_t size)
466{
467    struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468
469    /*
470     * We aren't guaranteed to have the superblock here, so we
471     * must unconditionally compute the ecc data.
472     * __ocfs2_journal_access() will only set the triggers if
473     * metaecc is enabled.
474     */
475    ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476}
477
478/*
479 * Quota blocks have their own trigger because the struct ocfs2_block_check
480 * offset depends on the blocksize.
481 */
482static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
483                 struct buffer_head *bh,
484                 void *data, size_t size)
485{
486    struct ocfs2_disk_dqtrailer *dqt =
487        ocfs2_block_dqtrailer(size, data);
488
489    /*
490     * We aren't guaranteed to have the superblock here, so we
491     * must unconditionally compute the ecc data.
492     * __ocfs2_journal_access() will only set the triggers if
493     * metaecc is enabled.
494     */
495    ocfs2_block_check_compute(data, size, &dqt->dq_check);
496}
497
498/*
499 * Directory blocks also have their own trigger because the
500 * struct ocfs2_block_check offset depends on the blocksize.
501 */
502static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
503                 struct buffer_head *bh,
504                 void *data, size_t size)
505{
506    struct ocfs2_dir_block_trailer *trailer =
507        ocfs2_dir_trailer_from_size(size, data);
508
509    /*
510     * We aren't guaranteed to have the superblock here, so we
511     * must unconditionally compute the ecc data.
512     * __ocfs2_journal_access() will only set the triggers if
513     * metaecc is enabled.
514     */
515    ocfs2_block_check_compute(data, size, &trailer->db_check);
516}
517
518static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519                struct buffer_head *bh)
520{
521    mlog(ML_ERROR,
522         "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
523         "bh->b_blocknr = %llu\n",
524         (unsigned long)bh,
525         (unsigned long long)bh->b_blocknr);
526
527    /* We aren't guaranteed to have the superblock here - but if we
528     * don't, it'll just crash. */
529    ocfs2_error(bh->b_assoc_map->host->i_sb,
530            "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531}
532
533static struct ocfs2_triggers di_triggers = {
534    .ot_triggers = {
535        .t_frozen = ocfs2_frozen_trigger,
536        .t_abort = ocfs2_abort_trigger,
537    },
538    .ot_offset = offsetof(struct ocfs2_dinode, i_check),
539};
540
541static struct ocfs2_triggers eb_triggers = {
542    .ot_triggers = {
543        .t_frozen = ocfs2_frozen_trigger,
544        .t_abort = ocfs2_abort_trigger,
545    },
546    .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
547};
548
549static struct ocfs2_triggers rb_triggers = {
550    .ot_triggers = {
551        .t_frozen = ocfs2_frozen_trigger,
552        .t_abort = ocfs2_abort_trigger,
553    },
554    .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
555};
556
557static struct ocfs2_triggers gd_triggers = {
558    .ot_triggers = {
559        .t_frozen = ocfs2_frozen_trigger,
560        .t_abort = ocfs2_abort_trigger,
561    },
562    .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
563};
564
565static struct ocfs2_triggers db_triggers = {
566    .ot_triggers = {
567        .t_frozen = ocfs2_db_frozen_trigger,
568        .t_abort = ocfs2_abort_trigger,
569    },
570};
571
572static struct ocfs2_triggers xb_triggers = {
573    .ot_triggers = {
574        .t_frozen = ocfs2_frozen_trigger,
575        .t_abort = ocfs2_abort_trigger,
576    },
577    .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
578};
579
580static struct ocfs2_triggers dq_triggers = {
581    .ot_triggers = {
582        .t_frozen = ocfs2_dq_frozen_trigger,
583        .t_abort = ocfs2_abort_trigger,
584    },
585};
586
587static struct ocfs2_triggers dr_triggers = {
588    .ot_triggers = {
589        .t_frozen = ocfs2_frozen_trigger,
590        .t_abort = ocfs2_abort_trigger,
591    },
592    .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
593};
594
595static struct ocfs2_triggers dl_triggers = {
596    .ot_triggers = {
597        .t_frozen = ocfs2_frozen_trigger,
598        .t_abort = ocfs2_abort_trigger,
599    },
600    .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
601};
602
603static int __ocfs2_journal_access(handle_t *handle,
604                  struct ocfs2_caching_info *ci,
605                  struct buffer_head *bh,
606                  struct ocfs2_triggers *triggers,
607                  int type)
608{
609    int status;
610    struct ocfs2_super *osb =
611        OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
612
613    BUG_ON(!ci || !ci->ci_ops);
614    BUG_ON(!handle);
615    BUG_ON(!bh);
616
617    trace_ocfs2_journal_access(
618        (unsigned long long)ocfs2_metadata_cache_owner(ci),
619        (unsigned long long)bh->b_blocknr, type, bh->b_size);
620
621    /* we can safely remove this assertion after testing. */
622    if (!buffer_uptodate(bh)) {
623        mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624        mlog(ML_ERROR, "b_blocknr=%llu\n",
625             (unsigned long long)bh->b_blocknr);
626        BUG();
627    }
628
629    /* Set the current transaction information on the ci so
630     * that the locking code knows whether it can drop it's locks
631     * on this ci or not. We're protected from the commit
632     * thread updating the current transaction id until
633     * ocfs2_commit_trans() because ocfs2_start_trans() took
634     * j_trans_barrier for us. */
635    ocfs2_set_ci_lock_trans(osb->journal, ci);
636
637    ocfs2_metadata_cache_io_lock(ci);
638    switch (type) {
639    case OCFS2_JOURNAL_ACCESS_CREATE:
640    case OCFS2_JOURNAL_ACCESS_WRITE:
641        status = jbd2_journal_get_write_access(handle, bh);
642        break;
643
644    case OCFS2_JOURNAL_ACCESS_UNDO:
645        status = jbd2_journal_get_undo_access(handle, bh);
646        break;
647
648    default:
649        status = -EINVAL;
650        mlog(ML_ERROR, "Unknown access type!\n");
651    }
652    if (!status && ocfs2_meta_ecc(osb) && triggers)
653        jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
654    ocfs2_metadata_cache_io_unlock(ci);
655
656    if (status < 0)
657        mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658             status, type);
659
660    return status;
661}
662
663int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664                struct buffer_head *bh, int type)
665{
666    return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
667}
668
669int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
670                struct buffer_head *bh, int type)
671{
672    return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
673}
674
675int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676                struct buffer_head *bh, int type)
677{
678    return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679                      type);
680}
681
682int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
683                struct buffer_head *bh, int type)
684{
685    return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
686}
687
688int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
689                struct buffer_head *bh, int type)
690{
691    return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
692}
693
694int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
695                struct buffer_head *bh, int type)
696{
697    return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
698}
699
700int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
701                struct buffer_head *bh, int type)
702{
703    return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
704}
705
706int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
707                struct buffer_head *bh, int type)
708{
709    return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
710}
711
712int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
713                struct buffer_head *bh, int type)
714{
715    return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
716}
717
718int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
719             struct buffer_head *bh, int type)
720{
721    return __ocfs2_journal_access(handle, ci, bh, NULL, type);
722}
723
724void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
725{
726    int status;
727
728    trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
729
730    status = jbd2_journal_dirty_metadata(handle, bh);
731    BUG_ON(status);
732}
733
734#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
735
736void ocfs2_set_journal_params(struct ocfs2_super *osb)
737{
738    journal_t *journal = osb->journal->j_journal;
739    unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740
741    if (osb->osb_commit_interval)
742        commit_interval = osb->osb_commit_interval;
743
744    write_lock(&journal->j_state_lock);
745    journal->j_commit_interval = commit_interval;
746    if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
747        journal->j_flags |= JBD2_BARRIER;
748    else
749        journal->j_flags &= ~JBD2_BARRIER;
750    write_unlock(&journal->j_state_lock);
751}
752
753int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754{
755    int status = -1;
756    struct inode *inode = NULL; /* the journal inode */
757    journal_t *j_journal = NULL;
758    struct ocfs2_dinode *di = NULL;
759    struct buffer_head *bh = NULL;
760    struct ocfs2_super *osb;
761    int inode_lock = 0;
762
763    BUG_ON(!journal);
764
765    osb = journal->j_osb;
766
767    /* already have the inode for our journal */
768    inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769                        osb->slot_num);
770    if (inode == NULL) {
771        status = -EACCES;
772        mlog_errno(status);
773        goto done;
774    }
775    if (is_bad_inode(inode)) {
776        mlog(ML_ERROR, "access error (bad inode)\n");
777        iput(inode);
778        inode = NULL;
779        status = -EACCES;
780        goto done;
781    }
782
783    SET_INODE_JOURNAL(inode);
784    OCFS2_I(inode)->ip_open_count++;
785
786    /* Skip recovery waits here - journal inode metadata never
787     * changes in a live cluster so it can be considered an
788     * exception to the rule. */
789    status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
790    if (status < 0) {
791        if (status != -ERESTARTSYS)
792            mlog(ML_ERROR, "Could not get lock on journal!\n");
793        goto done;
794    }
795
796    inode_lock = 1;
797    di = (struct ocfs2_dinode *)bh->b_data;
798
799    if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
800        mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801             inode->i_size);
802        status = -EINVAL;
803        goto done;
804    }
805
806    trace_ocfs2_journal_init(inode->i_size,
807                 (unsigned long long)inode->i_blocks,
808                 OCFS2_I(inode)->ip_clusters);
809
810    /* call the kernels journal init function now */
811    j_journal = jbd2_journal_init_inode(inode);
812    if (j_journal == NULL) {
813        mlog(ML_ERROR, "Linux journal layer error\n");
814        status = -EINVAL;
815        goto done;
816    }
817
818    trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
819
820    *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821          OCFS2_JOURNAL_DIRTY_FL);
822
823    journal->j_journal = j_journal;
824    journal->j_inode = inode;
825    journal->j_bh = bh;
826
827    ocfs2_set_journal_params(osb);
828
829    journal->j_state = OCFS2_JOURNAL_LOADED;
830
831    status = 0;
832done:
833    if (status < 0) {
834        if (inode_lock)
835            ocfs2_inode_unlock(inode, 1);
836        brelse(bh);
837        if (inode) {
838            OCFS2_I(inode)->ip_open_count--;
839            iput(inode);
840        }
841    }
842
843    return status;
844}
845
846static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847{
848    le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849}
850
851static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852{
853    return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854}
855
856static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
857                      int dirty, int replayed)
858{
859    int status;
860    unsigned int flags;
861    struct ocfs2_journal *journal = osb->journal;
862    struct buffer_head *bh = journal->j_bh;
863    struct ocfs2_dinode *fe;
864
865    fe = (struct ocfs2_dinode *)bh->b_data;
866
867    /* The journal bh on the osb always comes from ocfs2_journal_init()
868     * and was validated there inside ocfs2_inode_lock_full(). It's a
869     * code bug if we mess it up. */
870    BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
871
872    flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873    if (dirty)
874        flags |= OCFS2_JOURNAL_DIRTY_FL;
875    else
876        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877    fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878
879    if (replayed)
880        ocfs2_bump_recovery_generation(fe);
881
882    ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
883    status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
884    if (status < 0)
885        mlog_errno(status);
886
887    return status;
888}
889
890/*
891 * If the journal has been kmalloc'd it needs to be freed after this
892 * call.
893 */
894void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895{
896    struct ocfs2_journal *journal = NULL;
897    int status = 0;
898    struct inode *inode = NULL;
899    int num_running_trans = 0;
900
901    BUG_ON(!osb);
902
903    journal = osb->journal;
904    if (!journal)
905        goto done;
906
907    inode = journal->j_inode;
908
909    if (journal->j_state != OCFS2_JOURNAL_LOADED)
910        goto done;
911
912    /* need to inc inode use count - jbd2_journal_destroy will iput. */
913    if (!igrab(inode))
914        BUG();
915
916    num_running_trans = atomic_read(&(osb->journal->j_num_trans));
917    trace_ocfs2_journal_shutdown(num_running_trans);
918
919    /* Do a commit_cache here. It will flush our journal, *and*
920     * release any locks that are still held.
921     * set the SHUTDOWN flag and release the trans lock.
922     * the commit thread will take the trans lock for us below. */
923    journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924
925    /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926     * drop the trans_lock (which we want to hold until we
927     * completely destroy the journal. */
928    if (osb->commit_task) {
929        /* Wait for the commit thread */
930        trace_ocfs2_journal_shutdown_wait(osb->commit_task);
931        kthread_stop(osb->commit_task);
932        osb->commit_task = NULL;
933    }
934
935    BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936
937    if (ocfs2_mount_local(osb)) {
938        jbd2_journal_lock_updates(journal->j_journal);
939        status = jbd2_journal_flush(journal->j_journal);
940        jbd2_journal_unlock_updates(journal->j_journal);
941        if (status < 0)
942            mlog_errno(status);
943    }
944
945    if (status == 0) {
946        /*
947         * Do not toggle if flush was unsuccessful otherwise
948         * will leave dirty metadata in a "clean" journal
949         */
950        status = ocfs2_journal_toggle_dirty(osb, 0, 0);
951        if (status < 0)
952            mlog_errno(status);
953    }
954
955    /* Shutdown the kernel journal system */
956    jbd2_journal_destroy(journal->j_journal);
957    journal->j_journal = NULL;
958
959    OCFS2_I(inode)->ip_open_count--;
960
961    /* unlock our journal */
962    ocfs2_inode_unlock(inode, 1);
963
964    brelse(journal->j_bh);
965    journal->j_bh = NULL;
966
967    journal->j_state = OCFS2_JOURNAL_FREE;
968
969// up_write(&journal->j_trans_barrier);
970done:
971    if (inode)
972        iput(inode);
973}
974
975static void ocfs2_clear_journal_error(struct super_block *sb,
976                      journal_t *journal,
977                      int slot)
978{
979    int olderr;
980
981    olderr = jbd2_journal_errno(journal);
982    if (olderr) {
983        mlog(ML_ERROR, "File system error %d recorded in "
984             "journal %u.\n", olderr, slot);
985        mlog(ML_ERROR, "File system on device %s needs checking.\n",
986             sb->s_id);
987
988        jbd2_journal_ack_err(journal);
989        jbd2_journal_clear_err(journal);
990    }
991}
992
993int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
994{
995    int status = 0;
996    struct ocfs2_super *osb;
997
998    BUG_ON(!journal);
999
1000    osb = journal->j_osb;
1001
1002    status = jbd2_journal_load(journal->j_journal);
1003    if (status < 0) {
1004        mlog(ML_ERROR, "Failed to load journal!\n");
1005        goto done;
1006    }
1007
1008    ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
1010    status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1011    if (status < 0) {
1012        mlog_errno(status);
1013        goto done;
1014    }
1015
1016    /* Launch the commit thread */
1017    if (!local) {
1018        osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019                           "ocfs2cmt");
1020        if (IS_ERR(osb->commit_task)) {
1021            status = PTR_ERR(osb->commit_task);
1022            osb->commit_task = NULL;
1023            mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024                 "error=%d", status);
1025            goto done;
1026        }
1027    } else
1028        osb->commit_task = NULL;
1029
1030done:
1031    return status;
1032}
1033
1034
1035/* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
1037int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038{
1039    int status;
1040
1041    BUG_ON(!journal);
1042
1043    status = jbd2_journal_wipe(journal->j_journal, full);
1044    if (status < 0) {
1045        mlog_errno(status);
1046        goto bail;
1047    }
1048
1049    status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1050    if (status < 0)
1051        mlog_errno(status);
1052
1053bail:
1054    return status;
1055}
1056
1057static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058{
1059    int empty;
1060    struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062    spin_lock(&osb->osb_lock);
1063    empty = (rm->rm_used == 0);
1064    spin_unlock(&osb->osb_lock);
1065
1066    return empty;
1067}
1068
1069void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070{
1071    wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072}
1073
1074/*
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1083 */
1084static int ocfs2_force_read_journal(struct inode *inode)
1085{
1086    int status = 0;
1087    int i;
1088    u64 v_blkno, p_blkno, p_blocks, num_blocks;
1089#define CONCURRENT_JOURNAL_FILL 32ULL
1090    struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
1092    memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
1094    num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1095    v_blkno = 0;
1096    while (v_blkno < num_blocks) {
1097        status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1098                             &p_blkno, &p_blocks, NULL);
1099        if (status < 0) {
1100            mlog_errno(status);
1101            goto bail;
1102        }
1103
1104        if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105            p_blocks = CONCURRENT_JOURNAL_FILL;
1106
1107        /* We are reading journal data which should not
1108         * be put in the uptodate cache */
1109        status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110                        p_blkno, p_blocks, bhs);
1111        if (status < 0) {
1112            mlog_errno(status);
1113            goto bail;
1114        }
1115
1116        for(i = 0; i < p_blocks; i++) {
1117            brelse(bhs[i]);
1118            bhs[i] = NULL;
1119        }
1120
1121        v_blkno += p_blocks;
1122    }
1123
1124bail:
1125    for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1126        brelse(bhs[i]);
1127    return status;
1128}
1129
1130struct ocfs2_la_recovery_item {
1131    struct list_head lri_list;
1132    int lri_slot;
1133    struct ocfs2_dinode *lri_la_dinode;
1134    struct ocfs2_dinode *lri_tl_dinode;
1135    struct ocfs2_quota_recovery *lri_qrec;
1136};
1137
1138/* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1144 *
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1147 */
1148void ocfs2_complete_recovery(struct work_struct *work)
1149{
1150    int ret = 0;
1151    struct ocfs2_journal *journal =
1152        container_of(work, struct ocfs2_journal, j_recovery_work);
1153    struct ocfs2_super *osb = journal->j_osb;
1154    struct ocfs2_dinode *la_dinode, *tl_dinode;
1155    struct ocfs2_la_recovery_item *item, *n;
1156    struct ocfs2_quota_recovery *qrec;
1157    LIST_HEAD(tmp_la_list);
1158
1159    trace_ocfs2_complete_recovery(
1160        (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1161
1162    spin_lock(&journal->j_lock);
1163    list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164    spin_unlock(&journal->j_lock);
1165
1166    list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1167        list_del_init(&item->lri_list);
1168
1169        ocfs2_wait_on_quotas(osb);
1170
1171        la_dinode = item->lri_la_dinode;
1172        tl_dinode = item->lri_tl_dinode;
1173        qrec = item->lri_qrec;
1174
1175        trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176            la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177            tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178            qrec);
1179
1180        if (la_dinode) {
1181            ret = ocfs2_complete_local_alloc_recovery(osb,
1182                                  la_dinode);
1183            if (ret < 0)
1184                mlog_errno(ret);
1185
1186            kfree(la_dinode);
1187        }
1188
1189        if (tl_dinode) {
1190            ret = ocfs2_complete_truncate_log_recovery(osb,
1191                                   tl_dinode);
1192            if (ret < 0)
1193                mlog_errno(ret);
1194
1195            kfree(tl_dinode);
1196        }
1197
1198        ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199        if (ret < 0)
1200            mlog_errno(ret);
1201
1202        if (qrec) {
1203            ret = ocfs2_finish_quota_recovery(osb, qrec,
1204                              item->lri_slot);
1205            if (ret < 0)
1206                mlog_errno(ret);
1207            /* Recovery info is already freed now */
1208        }
1209
1210        kfree(item);
1211    }
1212
1213    trace_ocfs2_complete_recovery_end(ret);
1214}
1215
1216/* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
1219static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220                        int slot_num,
1221                        struct ocfs2_dinode *la_dinode,
1222                        struct ocfs2_dinode *tl_dinode,
1223                        struct ocfs2_quota_recovery *qrec)
1224{
1225    struct ocfs2_la_recovery_item *item;
1226
1227    item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1228    if (!item) {
1229        /* Though we wish to avoid it, we are in fact safe in
1230         * skipping local alloc cleanup as fsck.ocfs2 is more
1231         * than capable of reclaiming unused space. */
1232        if (la_dinode)
1233            kfree(la_dinode);
1234
1235        if (tl_dinode)
1236            kfree(tl_dinode);
1237
1238        if (qrec)
1239            ocfs2_free_quota_recovery(qrec);
1240
1241        mlog_errno(-ENOMEM);
1242        return;
1243    }
1244
1245    INIT_LIST_HEAD(&item->lri_list);
1246    item->lri_la_dinode = la_dinode;
1247    item->lri_slot = slot_num;
1248    item->lri_tl_dinode = tl_dinode;
1249    item->lri_qrec = qrec;
1250
1251    spin_lock(&journal->j_lock);
1252    list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253    queue_work(ocfs2_wq, &journal->j_recovery_work);
1254    spin_unlock(&journal->j_lock);
1255}
1256
1257/* Called by the mount code to queue recovery the last part of
1258 * recovery for it's own and offline slot(s). */
1259void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260{
1261    struct ocfs2_journal *journal = osb->journal;
1262
1263    if (ocfs2_is_hard_readonly(osb))
1264        return;
1265
1266    /* No need to queue up our truncate_log as regular cleanup will catch
1267     * that */
1268    ocfs2_queue_recovery_completion(journal, osb->slot_num,
1269                    osb->local_alloc_copy, NULL, NULL);
1270    ocfs2_schedule_truncate_log_flush(osb, 0);
1271
1272    osb->local_alloc_copy = NULL;
1273    osb->dirty = 0;
1274
1275    /* queue to recover orphan slots for all offline slots */
1276    ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1277    ocfs2_queue_replay_slots(osb);
1278    ocfs2_free_replay_slots(osb);
1279}
1280
1281void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1282{
1283    if (osb->quota_rec) {
1284        ocfs2_queue_recovery_completion(osb->journal,
1285                        osb->slot_num,
1286                        NULL,
1287                        NULL,
1288                        osb->quota_rec);
1289        osb->quota_rec = NULL;
1290    }
1291}
1292
1293static int __ocfs2_recovery_thread(void *arg)
1294{
1295    int status, node_num, slot_num;
1296    struct ocfs2_super *osb = arg;
1297    struct ocfs2_recovery_map *rm = osb->recovery_map;
1298    int *rm_quota = NULL;
1299    int rm_quota_used = 0, i;
1300    struct ocfs2_quota_recovery *qrec;
1301
1302    status = ocfs2_wait_on_mount(osb);
1303    if (status < 0) {
1304        goto bail;
1305    }
1306
1307    rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1308    if (!rm_quota) {
1309        status = -ENOMEM;
1310        goto bail;
1311    }
1312restart:
1313    status = ocfs2_super_lock(osb, 1);
1314    if (status < 0) {
1315        mlog_errno(status);
1316        goto bail;
1317    }
1318
1319    status = ocfs2_compute_replay_slots(osb);
1320    if (status < 0)
1321        mlog_errno(status);
1322
1323    /* queue recovery for our own slot */
1324    ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1325                    NULL, NULL);
1326
1327    spin_lock(&osb->osb_lock);
1328    while (rm->rm_used) {
1329        /* It's always safe to remove entry zero, as we won't
1330         * clear it until ocfs2_recover_node() has succeeded. */
1331        node_num = rm->rm_entries[0];
1332        spin_unlock(&osb->osb_lock);
1333        slot_num = ocfs2_node_num_to_slot(osb, node_num);
1334        trace_ocfs2_recovery_thread_node(node_num, slot_num);
1335        if (slot_num == -ENOENT) {
1336            status = 0;
1337            goto skip_recovery;
1338        }
1339
1340        /* It is a bit subtle with quota recovery. We cannot do it
1341         * immediately because we have to obtain cluster locks from
1342         * quota files and we also don't want to just skip it because
1343         * then quota usage would be out of sync until some node takes
1344         * the slot. So we remember which nodes need quota recovery
1345         * and when everything else is done, we recover quotas. */
1346        for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1347        if (i == rm_quota_used)
1348            rm_quota[rm_quota_used++] = slot_num;
1349
1350        status = ocfs2_recover_node(osb, node_num, slot_num);
1351skip_recovery:
1352        if (!status) {
1353            ocfs2_recovery_map_clear(osb, node_num);
1354        } else {
1355            mlog(ML_ERROR,
1356                 "Error %d recovering node %d on device (%u,%u)!\n",
1357                 status, node_num,
1358                 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1359            mlog(ML_ERROR, "Volume requires unmount.\n");
1360        }
1361
1362        spin_lock(&osb->osb_lock);
1363    }
1364    spin_unlock(&osb->osb_lock);
1365    trace_ocfs2_recovery_thread_end(status);
1366
1367    /* Refresh all journal recovery generations from disk */
1368    status = ocfs2_check_journals_nolocks(osb);
1369    status = (status == -EROFS) ? 0 : status;
1370    if (status < 0)
1371        mlog_errno(status);
1372
1373    /* Now it is right time to recover quotas... We have to do this under
1374     * superblock lock so that no one can start using the slot (and crash)
1375     * before we recover it */
1376    for (i = 0; i < rm_quota_used; i++) {
1377        qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1378        if (IS_ERR(qrec)) {
1379            status = PTR_ERR(qrec);
1380            mlog_errno(status);
1381            continue;
1382        }
1383        ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1384                        NULL, NULL, qrec);
1385    }
1386
1387    ocfs2_super_unlock(osb, 1);
1388
1389    /* queue recovery for offline slots */
1390    ocfs2_queue_replay_slots(osb);
1391
1392bail:
1393    mutex_lock(&osb->recovery_lock);
1394    if (!status && !ocfs2_recovery_completed(osb)) {
1395        mutex_unlock(&osb->recovery_lock);
1396        goto restart;
1397    }
1398
1399    ocfs2_free_replay_slots(osb);
1400    osb->recovery_thread_task = NULL;
1401    mb(); /* sync with ocfs2_recovery_thread_running */
1402    wake_up(&osb->recovery_event);
1403
1404    mutex_unlock(&osb->recovery_lock);
1405
1406    if (rm_quota)
1407        kfree(rm_quota);
1408
1409    /* no one is callint kthread_stop() for us so the kthread() api
1410     * requires that we call do_exit(). And it isn't exported, but
1411     * complete_and_exit() seems to be a minimal wrapper around it. */
1412    complete_and_exit(NULL, status);
1413    return status;
1414}
1415
1416void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1417{
1418    mutex_lock(&osb->recovery_lock);
1419
1420    trace_ocfs2_recovery_thread(node_num, osb->node_num,
1421        osb->disable_recovery, osb->recovery_thread_task,
1422        osb->disable_recovery ?
1423        -1 : ocfs2_recovery_map_set(osb, node_num));
1424
1425    if (osb->disable_recovery)
1426        goto out;
1427
1428    if (osb->recovery_thread_task)
1429        goto out;
1430
1431    osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1432                         "ocfs2rec");
1433    if (IS_ERR(osb->recovery_thread_task)) {
1434        mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1435        osb->recovery_thread_task = NULL;
1436    }
1437
1438out:
1439    mutex_unlock(&osb->recovery_lock);
1440    wake_up(&osb->recovery_event);
1441}
1442
1443static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1444                    int slot_num,
1445                    struct buffer_head **bh,
1446                    struct inode **ret_inode)
1447{
1448    int status = -EACCES;
1449    struct inode *inode = NULL;
1450
1451    BUG_ON(slot_num >= osb->max_slots);
1452
1453    inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1454                        slot_num);
1455    if (!inode || is_bad_inode(inode)) {
1456        mlog_errno(status);
1457        goto bail;
1458    }
1459    SET_INODE_JOURNAL(inode);
1460
1461    status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1462    if (status < 0) {
1463        mlog_errno(status);
1464        goto bail;
1465    }
1466
1467    status = 0;
1468
1469bail:
1470    if (inode) {
1471        if (status || !ret_inode)
1472            iput(inode);
1473        else
1474            *ret_inode = inode;
1475    }
1476    return status;
1477}
1478
1479/* Does the actual journal replay and marks the journal inode as
1480 * clean. Will only replay if the journal inode is marked dirty. */
1481static int ocfs2_replay_journal(struct ocfs2_super *osb,
1482                int node_num,
1483                int slot_num)
1484{
1485    int status;
1486    int got_lock = 0;
1487    unsigned int flags;
1488    struct inode *inode = NULL;
1489    struct ocfs2_dinode *fe;
1490    journal_t *journal = NULL;
1491    struct buffer_head *bh = NULL;
1492    u32 slot_reco_gen;
1493
1494    status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1495    if (status) {
1496        mlog_errno(status);
1497        goto done;
1498    }
1499
1500    fe = (struct ocfs2_dinode *)bh->b_data;
1501    slot_reco_gen = ocfs2_get_recovery_generation(fe);
1502    brelse(bh);
1503    bh = NULL;
1504
1505    /*
1506     * As the fs recovery is asynchronous, there is a small chance that
1507     * another node mounted (and recovered) the slot before the recovery
1508     * thread could get the lock. To handle that, we dirty read the journal
1509     * inode for that slot to get the recovery generation. If it is
1510     * different than what we expected, the slot has been recovered.
1511     * If not, it needs recovery.
1512     */
1513    if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1514        trace_ocfs2_replay_journal_recovered(slot_num,
1515             osb->slot_recovery_generations[slot_num], slot_reco_gen);
1516        osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1517        status = -EBUSY;
1518        goto done;
1519    }
1520
1521    /* Continue with recovery as the journal has not yet been recovered */
1522
1523    status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1524    if (status < 0) {
1525        trace_ocfs2_replay_journal_lock_err(status);
1526        if (status != -ERESTARTSYS)
1527            mlog(ML_ERROR, "Could not lock journal!\n");
1528        goto done;
1529    }
1530    got_lock = 1;
1531
1532    fe = (struct ocfs2_dinode *) bh->b_data;
1533
1534    flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1535    slot_reco_gen = ocfs2_get_recovery_generation(fe);
1536
1537    if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1538        trace_ocfs2_replay_journal_skip(node_num);
1539        /* Refresh recovery generation for the slot */
1540        osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1541        goto done;
1542    }
1543
1544    /* we need to run complete recovery for offline orphan slots */
1545    ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1546
1547    mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1548         node_num, slot_num,
1549         MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1550
1551    OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1552
1553    status = ocfs2_force_read_journal(inode);
1554    if (status < 0) {
1555        mlog_errno(status);
1556        goto done;
1557    }
1558
1559    journal = jbd2_journal_init_inode(inode);
1560    if (journal == NULL) {
1561        mlog(ML_ERROR, "Linux journal layer error\n");
1562        status = -EIO;
1563        goto done;
1564    }
1565
1566    status = jbd2_journal_load(journal);
1567    if (status < 0) {
1568        mlog_errno(status);
1569        if (!igrab(inode))
1570            BUG();
1571        jbd2_journal_destroy(journal);
1572        goto done;
1573    }
1574
1575    ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1576
1577    /* wipe the journal */
1578    jbd2_journal_lock_updates(journal);
1579    status = jbd2_journal_flush(journal);
1580    jbd2_journal_unlock_updates(journal);
1581    if (status < 0)
1582        mlog_errno(status);
1583
1584    /* This will mark the node clean */
1585    flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586    flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1587    fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1588
1589    /* Increment recovery generation to indicate successful recovery */
1590    ocfs2_bump_recovery_generation(fe);
1591    osb->slot_recovery_generations[slot_num] =
1592                    ocfs2_get_recovery_generation(fe);
1593
1594    ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1595    status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1596    if (status < 0)
1597        mlog_errno(status);
1598
1599    if (!igrab(inode))
1600        BUG();
1601
1602    jbd2_journal_destroy(journal);
1603
1604done:
1605    /* drop the lock on this nodes journal */
1606    if (got_lock)
1607        ocfs2_inode_unlock(inode, 1);
1608
1609    if (inode)
1610        iput(inode);
1611
1612    brelse(bh);
1613
1614    return status;
1615}
1616
1617/*
1618 * Do the most important parts of node recovery:
1619 * - Replay it's journal
1620 * - Stamp a clean local allocator file
1621 * - Stamp a clean truncate log
1622 * - Mark the node clean
1623 *
1624 * If this function completes without error, a node in OCFS2 can be
1625 * said to have been safely recovered. As a result, failure during the
1626 * second part of a nodes recovery process (local alloc recovery) is
1627 * far less concerning.
1628 */
1629static int ocfs2_recover_node(struct ocfs2_super *osb,
1630                  int node_num, int slot_num)
1631{
1632    int status = 0;
1633    struct ocfs2_dinode *la_copy = NULL;
1634    struct ocfs2_dinode *tl_copy = NULL;
1635
1636    trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1637
1638    /* Should not ever be called to recover ourselves -- in that
1639     * case we should've called ocfs2_journal_load instead. */
1640    BUG_ON(osb->node_num == node_num);
1641
1642    status = ocfs2_replay_journal(osb, node_num, slot_num);
1643    if (status < 0) {
1644        if (status == -EBUSY) {
1645            trace_ocfs2_recover_node_skip(slot_num, node_num);
1646            status = 0;
1647            goto done;
1648        }
1649        mlog_errno(status);
1650        goto done;
1651    }
1652
1653    /* Stamp a clean local alloc file AFTER recovering the journal... */
1654    status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1655    if (status < 0) {
1656        mlog_errno(status);
1657        goto done;
1658    }
1659
1660    /* An error from begin_truncate_log_recovery is not
1661     * serious enough to warrant halting the rest of
1662     * recovery. */
1663    status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1664    if (status < 0)
1665        mlog_errno(status);
1666
1667    /* Likewise, this would be a strange but ultimately not so
1668     * harmful place to get an error... */
1669    status = ocfs2_clear_slot(osb, slot_num);
1670    if (status < 0)
1671        mlog_errno(status);
1672
1673    /* This will kfree the memory pointed to by la_copy and tl_copy */
1674    ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1675                    tl_copy, NULL);
1676
1677    status = 0;
1678done:
1679
1680    return status;
1681}
1682
1683/* Test node liveness by trylocking his journal. If we get the lock,
1684 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1685 * still alive (we couldn't get the lock) and < 0 on error. */
1686static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1687                 int slot_num)
1688{
1689    int status, flags;
1690    struct inode *inode = NULL;
1691
1692    inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1693                        slot_num);
1694    if (inode == NULL) {
1695        mlog(ML_ERROR, "access error\n");
1696        status = -EACCES;
1697        goto bail;
1698    }
1699    if (is_bad_inode(inode)) {
1700        mlog(ML_ERROR, "access error (bad inode)\n");
1701        iput(inode);
1702        inode = NULL;
1703        status = -EACCES;
1704        goto bail;
1705    }
1706    SET_INODE_JOURNAL(inode);
1707
1708    flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1709    status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1710    if (status < 0) {
1711        if (status != -EAGAIN)
1712            mlog_errno(status);
1713        goto bail;
1714    }
1715
1716    ocfs2_inode_unlock(inode, 1);
1717bail:
1718    if (inode)
1719        iput(inode);
1720
1721    return status;
1722}
1723
1724/* Call this underneath ocfs2_super_lock. It also assumes that the
1725 * slot info struct has been updated from disk. */
1726int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1727{
1728    unsigned int node_num;
1729    int status, i;
1730    u32 gen;
1731    struct buffer_head *bh = NULL;
1732    struct ocfs2_dinode *di;
1733
1734    /* This is called with the super block cluster lock, so we
1735     * know that the slot map can't change underneath us. */
1736
1737    for (i = 0; i < osb->max_slots; i++) {
1738        /* Read journal inode to get the recovery generation */
1739        status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1740        if (status) {
1741            mlog_errno(status);
1742            goto bail;
1743        }
1744        di = (struct ocfs2_dinode *)bh->b_data;
1745        gen = ocfs2_get_recovery_generation(di);
1746        brelse(bh);
1747        bh = NULL;
1748
1749        spin_lock(&osb->osb_lock);
1750        osb->slot_recovery_generations[i] = gen;
1751
1752        trace_ocfs2_mark_dead_nodes(i,
1753                        osb->slot_recovery_generations[i]);
1754
1755        if (i == osb->slot_num) {
1756            spin_unlock(&osb->osb_lock);
1757            continue;
1758        }
1759
1760        status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1761        if (status == -ENOENT) {
1762            spin_unlock(&osb->osb_lock);
1763            continue;
1764        }
1765
1766        if (__ocfs2_recovery_map_test(osb, node_num)) {
1767            spin_unlock(&osb->osb_lock);
1768            continue;
1769        }
1770        spin_unlock(&osb->osb_lock);
1771
1772        /* Ok, we have a slot occupied by another node which
1773         * is not in the recovery map. We trylock his journal
1774         * file here to test if he's alive. */
1775        status = ocfs2_trylock_journal(osb, i);
1776        if (!status) {
1777            /* Since we're called from mount, we know that
1778             * the recovery thread can't race us on
1779             * setting / checking the recovery bits. */
1780            ocfs2_recovery_thread(osb, node_num);
1781        } else if ((status < 0) && (status != -EAGAIN)) {
1782            mlog_errno(status);
1783            goto bail;
1784        }
1785    }
1786
1787    status = 0;
1788bail:
1789    return status;
1790}
1791
1792/*
1793 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1794 * randomness to the timeout to minimize multple nodes firing the timer at the
1795 * same time.
1796 */
1797static inline unsigned long ocfs2_orphan_scan_timeout(void)
1798{
1799    unsigned long time;
1800
1801    get_random_bytes(&time, sizeof(time));
1802    time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1803    return msecs_to_jiffies(time);
1804}
1805
1806/*
1807 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1808 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1809 * is done to catch any orphans that are left over in orphan directories.
1810 *
1811 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1812 * seconds. It gets an EX lock on os_lockres and checks sequence number
1813 * stored in LVB. If the sequence number has changed, it means some other
1814 * node has done the scan. This node skips the scan and tracks the
1815 * sequence number. If the sequence number didn't change, it means a scan
1816 * hasn't happened. The node queues a scan and increments the
1817 * sequence number in the LVB.
1818 */
1819void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1820{
1821    struct ocfs2_orphan_scan *os;
1822    int status, i;
1823    u32 seqno = 0;
1824
1825    os = &osb->osb_orphan_scan;
1826
1827    if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1828        goto out;
1829
1830    trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1831                        atomic_read(&os->os_state));
1832
1833    status = ocfs2_orphan_scan_lock(osb, &seqno);
1834    if (status < 0) {
1835        if (status != -EAGAIN)
1836            mlog_errno(status);
1837        goto out;
1838    }
1839
1840    /* Do no queue the tasks if the volume is being umounted */
1841    if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1842        goto unlock;
1843
1844    if (os->os_seqno != seqno) {
1845        os->os_seqno = seqno;
1846        goto unlock;
1847    }
1848
1849    for (i = 0; i < osb->max_slots; i++)
1850        ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1851                        NULL);
1852    /*
1853     * We queued a recovery on orphan slots, increment the sequence
1854     * number and update LVB so other node will skip the scan for a while
1855     */
1856    seqno++;
1857    os->os_count++;
1858    os->os_scantime = CURRENT_TIME;
1859unlock:
1860    ocfs2_orphan_scan_unlock(osb, seqno);
1861out:
1862    trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1863                      atomic_read(&os->os_state));
1864    return;
1865}
1866
1867/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1868void ocfs2_orphan_scan_work(struct work_struct *work)
1869{
1870    struct ocfs2_orphan_scan *os;
1871    struct ocfs2_super *osb;
1872
1873    os = container_of(work, struct ocfs2_orphan_scan,
1874              os_orphan_scan_work.work);
1875    osb = os->os_osb;
1876
1877    mutex_lock(&os->os_lock);
1878    ocfs2_queue_orphan_scan(osb);
1879    if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1880        queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1881                      ocfs2_orphan_scan_timeout());
1882    mutex_unlock(&os->os_lock);
1883}
1884
1885void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1886{
1887    struct ocfs2_orphan_scan *os;
1888
1889    os = &osb->osb_orphan_scan;
1890    if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1891        atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1892        mutex_lock(&os->os_lock);
1893        cancel_delayed_work(&os->os_orphan_scan_work);
1894        mutex_unlock(&os->os_lock);
1895    }
1896}
1897
1898void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1899{
1900    struct ocfs2_orphan_scan *os;
1901
1902    os = &osb->osb_orphan_scan;
1903    os->os_osb = osb;
1904    os->os_count = 0;
1905    os->os_seqno = 0;
1906    mutex_init(&os->os_lock);
1907    INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1908}
1909
1910void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1911{
1912    struct ocfs2_orphan_scan *os;
1913
1914    os = &osb->osb_orphan_scan;
1915    os->os_scantime = CURRENT_TIME;
1916    if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1917        atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1918    else {
1919        atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1920        queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1921                   ocfs2_orphan_scan_timeout());
1922    }
1923}
1924
1925struct ocfs2_orphan_filldir_priv {
1926    struct inode *head;
1927    struct ocfs2_super *osb;
1928};
1929
1930static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1931                loff_t pos, u64 ino, unsigned type)
1932{
1933    struct ocfs2_orphan_filldir_priv *p = priv;
1934    struct inode *iter;
1935
1936    if (name_len == 1 && !strncmp(".", name, 1))
1937        return 0;
1938    if (name_len == 2 && !strncmp("..", name, 2))
1939        return 0;
1940
1941    /* Skip bad inodes so that recovery can continue */
1942    iter = ocfs2_iget(p->osb, ino,
1943              OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1944    if (IS_ERR(iter))
1945        return 0;
1946
1947    trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1948    /* No locking is required for the next_orphan queue as there
1949     * is only ever a single process doing orphan recovery. */
1950    OCFS2_I(iter)->ip_next_orphan = p->head;
1951    p->head = iter;
1952
1953    return 0;
1954}
1955
1956static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1957                   int slot,
1958                   struct inode **head)
1959{
1960    int status;
1961    struct inode *orphan_dir_inode = NULL;
1962    struct ocfs2_orphan_filldir_priv priv;
1963    loff_t pos = 0;
1964
1965    priv.osb = osb;
1966    priv.head = *head;
1967
1968    orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1969                               ORPHAN_DIR_SYSTEM_INODE,
1970                               slot);
1971    if (!orphan_dir_inode) {
1972        status = -ENOENT;
1973        mlog_errno(status);
1974        return status;
1975    }
1976
1977    mutex_lock(&orphan_dir_inode->i_mutex);
1978    status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1979    if (status < 0) {
1980        mlog_errno(status);
1981        goto out;
1982    }
1983
1984    status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1985                   ocfs2_orphan_filldir);
1986    if (status) {
1987        mlog_errno(status);
1988        goto out_cluster;
1989    }
1990
1991    *head = priv.head;
1992
1993out_cluster:
1994    ocfs2_inode_unlock(orphan_dir_inode, 0);
1995out:
1996    mutex_unlock(&orphan_dir_inode->i_mutex);
1997    iput(orphan_dir_inode);
1998    return status;
1999}
2000
2001static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2002                          int slot)
2003{
2004    int ret;
2005
2006    spin_lock(&osb->osb_lock);
2007    ret = !osb->osb_orphan_wipes[slot];
2008    spin_unlock(&osb->osb_lock);
2009    return ret;
2010}
2011
2012static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2013                         int slot)
2014{
2015    spin_lock(&osb->osb_lock);
2016    /* Mark ourselves such that new processes in delete_inode()
2017     * know to quit early. */
2018    ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2019    while (osb->osb_orphan_wipes[slot]) {
2020        /* If any processes are already in the middle of an
2021         * orphan wipe on this dir, then we need to wait for
2022         * them. */
2023        spin_unlock(&osb->osb_lock);
2024        wait_event_interruptible(osb->osb_wipe_event,
2025                     ocfs2_orphan_recovery_can_continue(osb, slot));
2026        spin_lock(&osb->osb_lock);
2027    }
2028    spin_unlock(&osb->osb_lock);
2029}
2030
2031static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2032                          int slot)
2033{
2034    ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2035}
2036
2037/*
2038 * Orphan recovery. Each mounted node has it's own orphan dir which we
2039 * must run during recovery. Our strategy here is to build a list of
2040 * the inodes in the orphan dir and iget/iput them. The VFS does
2041 * (most) of the rest of the work.
2042 *
2043 * Orphan recovery can happen at any time, not just mount so we have a
2044 * couple of extra considerations.
2045 *
2046 * - We grab as many inodes as we can under the orphan dir lock -
2047 * doing iget() outside the orphan dir risks getting a reference on
2048 * an invalid inode.
2049 * - We must be sure not to deadlock with other processes on the
2050 * system wanting to run delete_inode(). This can happen when they go
2051 * to lock the orphan dir and the orphan recovery process attempts to
2052 * iget() inside the orphan dir lock. This can be avoided by
2053 * advertising our state to ocfs2_delete_inode().
2054 */
2055static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2056                 int slot)
2057{
2058    int ret = 0;
2059    struct inode *inode = NULL;
2060    struct inode *iter;
2061    struct ocfs2_inode_info *oi;
2062
2063    trace_ocfs2_recover_orphans(slot);
2064
2065    ocfs2_mark_recovering_orphan_dir(osb, slot);
2066    ret = ocfs2_queue_orphans(osb, slot, &inode);
2067    ocfs2_clear_recovering_orphan_dir(osb, slot);
2068
2069    /* Error here should be noted, but we want to continue with as
2070     * many queued inodes as we've got. */
2071    if (ret)
2072        mlog_errno(ret);
2073
2074    while (inode) {
2075        oi = OCFS2_I(inode);
2076        trace_ocfs2_recover_orphans_iput(
2077                    (unsigned long long)oi->ip_blkno);
2078
2079        iter = oi->ip_next_orphan;
2080
2081        spin_lock(&oi->ip_lock);
2082        /* The remote delete code may have set these on the
2083         * assumption that the other node would wipe them
2084         * successfully. If they are still in the node's
2085         * orphan dir, we need to reset that state. */
2086        oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2087
2088        /* Set the proper information to get us going into
2089         * ocfs2_delete_inode. */
2090        oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2091        spin_unlock(&oi->ip_lock);
2092
2093        iput(inode);
2094
2095        inode = iter;
2096    }
2097
2098    return ret;
2099}
2100
2101static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2102{
2103    /* This check is good because ocfs2 will wait on our recovery
2104     * thread before changing it to something other than MOUNTED
2105     * or DISABLED. */
2106    wait_event(osb->osb_mount_event,
2107          (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2108           atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2109           atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2110
2111    /* If there's an error on mount, then we may never get to the
2112     * MOUNTED flag, but this is set right before
2113     * dismount_volume() so we can trust it. */
2114    if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2115        trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2116        mlog(0, "mount error, exiting!\n");
2117        return -EBUSY;
2118    }
2119
2120    return 0;
2121}
2122
2123static int ocfs2_commit_thread(void *arg)
2124{
2125    int status;
2126    struct ocfs2_super *osb = arg;
2127    struct ocfs2_journal *journal = osb->journal;
2128
2129    /* we can trust j_num_trans here because _should_stop() is only set in
2130     * shutdown and nobody other than ourselves should be able to start
2131     * transactions. committing on shutdown might take a few iterations
2132     * as final transactions put deleted inodes on the list */
2133    while (!(kthread_should_stop() &&
2134         atomic_read(&journal->j_num_trans) == 0)) {
2135
2136        wait_event_interruptible(osb->checkpoint_event,
2137                     atomic_read(&journal->j_num_trans)
2138                     || kthread_should_stop());
2139
2140        status = ocfs2_commit_cache(osb);
2141        if (status < 0)
2142            mlog_errno(status);
2143
2144        if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2145            mlog(ML_KTHREAD,
2146                 "commit_thread: %u transactions pending on "
2147                 "shutdown\n",
2148                 atomic_read(&journal->j_num_trans));
2149        }
2150    }
2151
2152    return 0;
2153}
2154
2155/* Reads all the journal inodes without taking any cluster locks. Used
2156 * for hard readonly access to determine whether any journal requires
2157 * recovery. Also used to refresh the recovery generation numbers after
2158 * a journal has been recovered by another node.
2159 */
2160int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2161{
2162    int ret = 0;
2163    unsigned int slot;
2164    struct buffer_head *di_bh = NULL;
2165    struct ocfs2_dinode *di;
2166    int journal_dirty = 0;
2167
2168    for(slot = 0; slot < osb->max_slots; slot++) {
2169        ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2170        if (ret) {
2171            mlog_errno(ret);
2172            goto out;
2173        }
2174
2175        di = (struct ocfs2_dinode *) di_bh->b_data;
2176
2177        osb->slot_recovery_generations[slot] =
2178                    ocfs2_get_recovery_generation(di);
2179
2180        if (le32_to_cpu(di->id1.journal1.ij_flags) &
2181            OCFS2_JOURNAL_DIRTY_FL)
2182            journal_dirty = 1;
2183
2184        brelse(di_bh);
2185        di_bh = NULL;
2186    }
2187
2188out:
2189    if (journal_dirty)
2190        ret = -EROFS;
2191    return ret;
2192}
2193

Archive Download this file



interactive