Root/mm/kmemleak.c

1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
117
118/* scanning area inside a memory block */
119struct kmemleak_scan_area {
120    struct hlist_node node;
121    unsigned long start;
122    size_t size;
123};
124
125#define KMEMLEAK_GREY 0
126#define KMEMLEAK_BLACK -1
127
128/*
129 * Structure holding the metadata for each allocated memory block.
130 * Modifications to such objects should be made while holding the
131 * object->lock. Insertions or deletions from object_list, gray_list or
132 * tree_node are already protected by the corresponding locks or mutex (see
133 * the notes on locking above). These objects are reference-counted
134 * (use_count) and freed using the RCU mechanism.
135 */
136struct kmemleak_object {
137    spinlock_t lock;
138    unsigned long flags; /* object status flags */
139    struct list_head object_list;
140    struct list_head gray_list;
141    struct prio_tree_node tree_node;
142    struct rcu_head rcu; /* object_list lockless traversal */
143    /* object usage count; object freed when use_count == 0 */
144    atomic_t use_count;
145    unsigned long pointer;
146    size_t size;
147    /* minimum number of a pointers found before it is considered leak */
148    int min_count;
149    /* the total number of pointers found pointing to this object */
150    int count;
151    /* checksum for detecting modified objects */
152    u32 checksum;
153    /* memory ranges to be scanned inside an object (empty for all) */
154    struct hlist_head area_list;
155    unsigned long trace[MAX_TRACE];
156    unsigned int trace_len;
157    unsigned long jiffies; /* creation timestamp */
158    pid_t pid; /* pid of the current task */
159    char comm[TASK_COMM_LEN]; /* executable name */
160};
161
162/* flag representing the memory block allocation status */
163#define OBJECT_ALLOCATED (1 << 0)
164/* flag set after the first reporting of an unreference object */
165#define OBJECT_REPORTED (1 << 1)
166/* flag set to not scan the object */
167#define OBJECT_NO_SCAN (1 << 2)
168
169/* number of bytes to print per line; must be 16 or 32 */
170#define HEX_ROW_SIZE 16
171/* number of bytes to print at a time (1, 2, 4, 8) */
172#define HEX_GROUP_SIZE 1
173/* include ASCII after the hex output */
174#define HEX_ASCII 1
175/* max number of lines to be printed */
176#define HEX_MAX_LINES 2
177
178/* the list of all allocated objects */
179static LIST_HEAD(object_list);
180/* the list of gray-colored objects (see color_gray comment below) */
181static LIST_HEAD(gray_list);
182/* prio search tree for object boundaries */
183static struct prio_tree_root object_tree_root;
184/* rw_lock protecting the access to object_list and prio_tree_root */
185static DEFINE_RWLOCK(kmemleak_lock);
186
187/* allocation caches for kmemleak internal data */
188static struct kmem_cache *object_cache;
189static struct kmem_cache *scan_area_cache;
190
191/* set if tracing memory operations is enabled */
192static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
193/* set in the late_initcall if there were no errors */
194static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
195/* enables or disables early logging of the memory operations */
196static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
197/* set if a fata kmemleak error has occurred */
198static atomic_t kmemleak_error = ATOMIC_INIT(0);
199
200/* minimum and maximum address that may be valid pointers */
201static unsigned long min_addr = ULONG_MAX;
202static unsigned long max_addr;
203
204static struct task_struct *scan_thread;
205/* used to avoid reporting of recently allocated objects */
206static unsigned long jiffies_min_age;
207static unsigned long jiffies_last_scan;
208/* delay between automatic memory scannings */
209static signed long jiffies_scan_wait;
210/* enables or disables the task stacks scanning */
211static int kmemleak_stack_scan = 1;
212/* protects the memory scanning, parameters and debug/kmemleak file access */
213static DEFINE_MUTEX(scan_mutex);
214
215/*
216 * Early object allocation/freeing logging. Kmemleak is initialized after the
217 * kernel allocator. However, both the kernel allocator and kmemleak may
218 * allocate memory blocks which need to be tracked. Kmemleak defines an
219 * arbitrary buffer to hold the allocation/freeing information before it is
220 * fully initialized.
221 */
222
223/* kmemleak operation type for early logging */
224enum {
225    KMEMLEAK_ALLOC,
226    KMEMLEAK_FREE,
227    KMEMLEAK_FREE_PART,
228    KMEMLEAK_NOT_LEAK,
229    KMEMLEAK_IGNORE,
230    KMEMLEAK_SCAN_AREA,
231    KMEMLEAK_NO_SCAN
232};
233
234/*
235 * Structure holding the information passed to kmemleak callbacks during the
236 * early logging.
237 */
238struct early_log {
239    int op_type; /* kmemleak operation type */
240    const void *ptr; /* allocated/freed memory block */
241    size_t size; /* memory block size */
242    int min_count; /* minimum reference count */
243    unsigned long trace[MAX_TRACE]; /* stack trace */
244    unsigned int trace_len; /* stack trace length */
245};
246
247/* early logging buffer and current position */
248static struct early_log
249    early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
250static int crt_early_log __initdata;
251
252static void kmemleak_disable(void);
253
254/*
255 * Print a warning and dump the stack trace.
256 */
257#define kmemleak_warn(x...) do { \
258    pr_warning(x); \
259    dump_stack(); \
260} while (0)
261
262/*
263 * Macro invoked when a serious kmemleak condition occured and cannot be
264 * recovered from. Kmemleak will be disabled and further allocation/freeing
265 * tracing no longer available.
266 */
267#define kmemleak_stop(x...) do { \
268    kmemleak_warn(x); \
269    kmemleak_disable(); \
270} while (0)
271
272/*
273 * Printing of the objects hex dump to the seq file. The number of lines to be
274 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
275 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
276 * with the object->lock held.
277 */
278static void hex_dump_object(struct seq_file *seq,
279                struct kmemleak_object *object)
280{
281    const u8 *ptr = (const u8 *)object->pointer;
282    int i, len, remaining;
283    unsigned char linebuf[HEX_ROW_SIZE * 5];
284
285    /* limit the number of lines to HEX_MAX_LINES */
286    remaining = len =
287        min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
288
289    seq_printf(seq, " hex dump (first %d bytes):\n", len);
290    for (i = 0; i < len; i += HEX_ROW_SIZE) {
291        int linelen = min(remaining, HEX_ROW_SIZE);
292
293        remaining -= HEX_ROW_SIZE;
294        hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
295                   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
296                   HEX_ASCII);
297        seq_printf(seq, " %s\n", linebuf);
298    }
299}
300
301/*
302 * Object colors, encoded with count and min_count:
303 * - white - orphan object, not enough references to it (count < min_count)
304 * - gray - not orphan, not marked as false positive (min_count == 0) or
305 * sufficient references to it (count >= min_count)
306 * - black - ignore, it doesn't contain references (e.g. text section)
307 * (min_count == -1). No function defined for this color.
308 * Newly created objects don't have any color assigned (object->count == -1)
309 * before the next memory scan when they become white.
310 */
311static bool color_white(const struct kmemleak_object *object)
312{
313    return object->count != KMEMLEAK_BLACK &&
314        object->count < object->min_count;
315}
316
317static bool color_gray(const struct kmemleak_object *object)
318{
319    return object->min_count != KMEMLEAK_BLACK &&
320        object->count >= object->min_count;
321}
322
323/*
324 * Objects are considered unreferenced only if their color is white, they have
325 * not be deleted and have a minimum age to avoid false positives caused by
326 * pointers temporarily stored in CPU registers.
327 */
328static bool unreferenced_object(struct kmemleak_object *object)
329{
330    return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
331        time_before_eq(object->jiffies + jiffies_min_age,
332                   jiffies_last_scan);
333}
334
335/*
336 * Printing of the unreferenced objects information to the seq file. The
337 * print_unreferenced function must be called with the object->lock held.
338 */
339static void print_unreferenced(struct seq_file *seq,
340                   struct kmemleak_object *object)
341{
342    int i;
343    unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
344
345    seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
346           object->pointer, object->size);
347    seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
348           object->comm, object->pid, object->jiffies,
349           msecs_age / 1000, msecs_age % 1000);
350    hex_dump_object(seq, object);
351    seq_printf(seq, " backtrace:\n");
352
353    for (i = 0; i < object->trace_len; i++) {
354        void *ptr = (void *)object->trace[i];
355        seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
356    }
357}
358
359/*
360 * Print the kmemleak_object information. This function is used mainly for
361 * debugging special cases when kmemleak operations. It must be called with
362 * the object->lock held.
363 */
364static void dump_object_info(struct kmemleak_object *object)
365{
366    struct stack_trace trace;
367
368    trace.nr_entries = object->trace_len;
369    trace.entries = object->trace;
370
371    pr_notice("Object 0x%08lx (size %zu):\n",
372          object->tree_node.start, object->size);
373    pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
374          object->comm, object->pid, object->jiffies);
375    pr_notice(" min_count = %d\n", object->min_count);
376    pr_notice(" count = %d\n", object->count);
377    pr_notice(" flags = 0x%lx\n", object->flags);
378    pr_notice(" checksum = %d\n", object->checksum);
379    pr_notice(" backtrace:\n");
380    print_stack_trace(&trace, 4);
381}
382
383/*
384 * Look-up a memory block metadata (kmemleak_object) in the priority search
385 * tree based on a pointer value. If alias is 0, only values pointing to the
386 * beginning of the memory block are allowed. The kmemleak_lock must be held
387 * when calling this function.
388 */
389static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
390{
391    struct prio_tree_node *node;
392    struct prio_tree_iter iter;
393    struct kmemleak_object *object;
394
395    prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
396    node = prio_tree_next(&iter);
397    if (node) {
398        object = prio_tree_entry(node, struct kmemleak_object,
399                     tree_node);
400        if (!alias && object->pointer != ptr) {
401            kmemleak_warn("Found object by alias");
402            object = NULL;
403        }
404    } else
405        object = NULL;
406
407    return object;
408}
409
410/*
411 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
412 * that once an object's use_count reached 0, the RCU freeing was already
413 * registered and the object should no longer be used. This function must be
414 * called under the protection of rcu_read_lock().
415 */
416static int get_object(struct kmemleak_object *object)
417{
418    return atomic_inc_not_zero(&object->use_count);
419}
420
421/*
422 * RCU callback to free a kmemleak_object.
423 */
424static void free_object_rcu(struct rcu_head *rcu)
425{
426    struct hlist_node *elem, *tmp;
427    struct kmemleak_scan_area *area;
428    struct kmemleak_object *object =
429        container_of(rcu, struct kmemleak_object, rcu);
430
431    /*
432     * Once use_count is 0 (guaranteed by put_object), there is no other
433     * code accessing this object, hence no need for locking.
434     */
435    hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
436        hlist_del(elem);
437        kmem_cache_free(scan_area_cache, area);
438    }
439    kmem_cache_free(object_cache, object);
440}
441
442/*
443 * Decrement the object use_count. Once the count is 0, free the object using
444 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
445 * delete_object() path, the delayed RCU freeing ensures that there is no
446 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
447 * is also possible.
448 */
449static void put_object(struct kmemleak_object *object)
450{
451    if (!atomic_dec_and_test(&object->use_count))
452        return;
453
454    /* should only get here after delete_object was called */
455    WARN_ON(object->flags & OBJECT_ALLOCATED);
456
457    call_rcu(&object->rcu, free_object_rcu);
458}
459
460/*
461 * Look up an object in the prio search tree and increase its use_count.
462 */
463static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
464{
465    unsigned long flags;
466    struct kmemleak_object *object = NULL;
467
468    rcu_read_lock();
469    read_lock_irqsave(&kmemleak_lock, flags);
470    if (ptr >= min_addr && ptr < max_addr)
471        object = lookup_object(ptr, alias);
472    read_unlock_irqrestore(&kmemleak_lock, flags);
473
474    /* check whether the object is still available */
475    if (object && !get_object(object))
476        object = NULL;
477    rcu_read_unlock();
478
479    return object;
480}
481
482/*
483 * Save stack trace to the given array of MAX_TRACE size.
484 */
485static int __save_stack_trace(unsigned long *trace)
486{
487    struct stack_trace stack_trace;
488
489    stack_trace.max_entries = MAX_TRACE;
490    stack_trace.nr_entries = 0;
491    stack_trace.entries = trace;
492    stack_trace.skip = 2;
493    save_stack_trace(&stack_trace);
494
495    return stack_trace.nr_entries;
496}
497
498/*
499 * Create the metadata (struct kmemleak_object) corresponding to an allocated
500 * memory block and add it to the object_list and object_tree_root.
501 */
502static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
503                         int min_count, gfp_t gfp)
504{
505    unsigned long flags;
506    struct kmemleak_object *object;
507    struct prio_tree_node *node;
508
509    object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
510    if (!object) {
511        kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
512        return NULL;
513    }
514
515    INIT_LIST_HEAD(&object->object_list);
516    INIT_LIST_HEAD(&object->gray_list);
517    INIT_HLIST_HEAD(&object->area_list);
518    spin_lock_init(&object->lock);
519    atomic_set(&object->use_count, 1);
520    object->flags = OBJECT_ALLOCATED;
521    object->pointer = ptr;
522    object->size = size;
523    object->min_count = min_count;
524    object->count = 0; /* white color initially */
525    object->jiffies = jiffies;
526    object->checksum = 0;
527
528    /* task information */
529    if (in_irq()) {
530        object->pid = 0;
531        strncpy(object->comm, "hardirq", sizeof(object->comm));
532    } else if (in_softirq()) {
533        object->pid = 0;
534        strncpy(object->comm, "softirq", sizeof(object->comm));
535    } else {
536        object->pid = current->pid;
537        /*
538         * There is a small chance of a race with set_task_comm(),
539         * however using get_task_comm() here may cause locking
540         * dependency issues with current->alloc_lock. In the worst
541         * case, the command line is not correct.
542         */
543        strncpy(object->comm, current->comm, sizeof(object->comm));
544    }
545
546    /* kernel backtrace */
547    object->trace_len = __save_stack_trace(object->trace);
548
549    INIT_PRIO_TREE_NODE(&object->tree_node);
550    object->tree_node.start = ptr;
551    object->tree_node.last = ptr + size - 1;
552
553    write_lock_irqsave(&kmemleak_lock, flags);
554
555    min_addr = min(min_addr, ptr);
556    max_addr = max(max_addr, ptr + size);
557    node = prio_tree_insert(&object_tree_root, &object->tree_node);
558    /*
559     * The code calling the kernel does not yet have the pointer to the
560     * memory block to be able to free it. However, we still hold the
561     * kmemleak_lock here in case parts of the kernel started freeing
562     * random memory blocks.
563     */
564    if (node != &object->tree_node) {
565        kmemleak_stop("Cannot insert 0x%lx into the object search tree "
566                  "(already existing)\n", ptr);
567        object = lookup_object(ptr, 1);
568        spin_lock(&object->lock);
569        dump_object_info(object);
570        spin_unlock(&object->lock);
571
572        goto out;
573    }
574    list_add_tail_rcu(&object->object_list, &object_list);
575out:
576    write_unlock_irqrestore(&kmemleak_lock, flags);
577    return object;
578}
579
580/*
581 * Remove the metadata (struct kmemleak_object) for a memory block from the
582 * object_list and object_tree_root and decrement its use_count.
583 */
584static void __delete_object(struct kmemleak_object *object)
585{
586    unsigned long flags;
587
588    write_lock_irqsave(&kmemleak_lock, flags);
589    prio_tree_remove(&object_tree_root, &object->tree_node);
590    list_del_rcu(&object->object_list);
591    write_unlock_irqrestore(&kmemleak_lock, flags);
592
593    WARN_ON(!(object->flags & OBJECT_ALLOCATED));
594    WARN_ON(atomic_read(&object->use_count) < 2);
595
596    /*
597     * Locking here also ensures that the corresponding memory block
598     * cannot be freed when it is being scanned.
599     */
600    spin_lock_irqsave(&object->lock, flags);
601    object->flags &= ~OBJECT_ALLOCATED;
602    spin_unlock_irqrestore(&object->lock, flags);
603    put_object(object);
604}
605
606/*
607 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
608 * delete it.
609 */
610static void delete_object_full(unsigned long ptr)
611{
612    struct kmemleak_object *object;
613
614    object = find_and_get_object(ptr, 0);
615    if (!object) {
616#ifdef DEBUG
617        kmemleak_warn("Freeing unknown object at 0x%08lx\n",
618                  ptr);
619#endif
620        return;
621    }
622    __delete_object(object);
623    put_object(object);
624}
625
626/*
627 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628 * delete it. If the memory block is partially freed, the function may create
629 * additional metadata for the remaining parts of the block.
630 */
631static void delete_object_part(unsigned long ptr, size_t size)
632{
633    struct kmemleak_object *object;
634    unsigned long start, end;
635
636    object = find_and_get_object(ptr, 1);
637    if (!object) {
638#ifdef DEBUG
639        kmemleak_warn("Partially freeing unknown object at 0x%08lx "
640                  "(size %zu)\n", ptr, size);
641#endif
642        return;
643    }
644    __delete_object(object);
645
646    /*
647     * Create one or two objects that may result from the memory block
648     * split. Note that partial freeing is only done by free_bootmem() and
649     * this happens before kmemleak_init() is called. The path below is
650     * only executed during early log recording in kmemleak_init(), so
651     * GFP_KERNEL is enough.
652     */
653    start = object->pointer;
654    end = object->pointer + object->size;
655    if (ptr > start)
656        create_object(start, ptr - start, object->min_count,
657                  GFP_KERNEL);
658    if (ptr + size < end)
659        create_object(ptr + size, end - ptr - size, object->min_count,
660                  GFP_KERNEL);
661
662    put_object(object);
663}
664
665static void __paint_it(struct kmemleak_object *object, int color)
666{
667    object->min_count = color;
668    if (color == KMEMLEAK_BLACK)
669        object->flags |= OBJECT_NO_SCAN;
670}
671
672static void paint_it(struct kmemleak_object *object, int color)
673{
674    unsigned long flags;
675
676    spin_lock_irqsave(&object->lock, flags);
677    __paint_it(object, color);
678    spin_unlock_irqrestore(&object->lock, flags);
679}
680
681static void paint_ptr(unsigned long ptr, int color)
682{
683    struct kmemleak_object *object;
684
685    object = find_and_get_object(ptr, 0);
686    if (!object) {
687        kmemleak_warn("Trying to color unknown object "
688                  "at 0x%08lx as %s\n", ptr,
689                  (color == KMEMLEAK_GREY) ? "Grey" :
690                  (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
691        return;
692    }
693    paint_it(object, color);
694    put_object(object);
695}
696
697/*
698 * Make a object permanently as gray-colored so that it can no longer be
699 * reported as a leak. This is used in general to mark a false positive.
700 */
701static void make_gray_object(unsigned long ptr)
702{
703    paint_ptr(ptr, KMEMLEAK_GREY);
704}
705
706/*
707 * Mark the object as black-colored so that it is ignored from scans and
708 * reporting.
709 */
710static void make_black_object(unsigned long ptr)
711{
712    paint_ptr(ptr, KMEMLEAK_BLACK);
713}
714
715/*
716 * Add a scanning area to the object. If at least one such area is added,
717 * kmemleak will only scan these ranges rather than the whole memory block.
718 */
719static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
720{
721    unsigned long flags;
722    struct kmemleak_object *object;
723    struct kmemleak_scan_area *area;
724
725    object = find_and_get_object(ptr, 1);
726    if (!object) {
727        kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
728                  ptr);
729        return;
730    }
731
732    area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
733    if (!area) {
734        kmemleak_warn("Cannot allocate a scan area\n");
735        goto out;
736    }
737
738    spin_lock_irqsave(&object->lock, flags);
739    if (ptr + size > object->pointer + object->size) {
740        kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
741        dump_object_info(object);
742        kmem_cache_free(scan_area_cache, area);
743        goto out_unlock;
744    }
745
746    INIT_HLIST_NODE(&area->node);
747    area->start = ptr;
748    area->size = size;
749
750    hlist_add_head(&area->node, &object->area_list);
751out_unlock:
752    spin_unlock_irqrestore(&object->lock, flags);
753out:
754    put_object(object);
755}
756
757/*
758 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
759 * pointer. Such object will not be scanned by kmemleak but references to it
760 * are searched.
761 */
762static void object_no_scan(unsigned long ptr)
763{
764    unsigned long flags;
765    struct kmemleak_object *object;
766
767    object = find_and_get_object(ptr, 0);
768    if (!object) {
769        kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
770        return;
771    }
772
773    spin_lock_irqsave(&object->lock, flags);
774    object->flags |= OBJECT_NO_SCAN;
775    spin_unlock_irqrestore(&object->lock, flags);
776    put_object(object);
777}
778
779/*
780 * Log an early kmemleak_* call to the early_log buffer. These calls will be
781 * processed later once kmemleak is fully initialized.
782 */
783static void __init log_early(int op_type, const void *ptr, size_t size,
784                 int min_count)
785{
786    unsigned long flags;
787    struct early_log *log;
788
789    if (crt_early_log >= ARRAY_SIZE(early_log)) {
790        pr_warning("Early log buffer exceeded, "
791               "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
792        kmemleak_disable();
793        return;
794    }
795
796    /*
797     * There is no need for locking since the kernel is still in UP mode
798     * at this stage. Disabling the IRQs is enough.
799     */
800    local_irq_save(flags);
801    log = &early_log[crt_early_log];
802    log->op_type = op_type;
803    log->ptr = ptr;
804    log->size = size;
805    log->min_count = min_count;
806    if (op_type == KMEMLEAK_ALLOC)
807        log->trace_len = __save_stack_trace(log->trace);
808    crt_early_log++;
809    local_irq_restore(flags);
810}
811
812/*
813 * Log an early allocated block and populate the stack trace.
814 */
815static void early_alloc(struct early_log *log)
816{
817    struct kmemleak_object *object;
818    unsigned long flags;
819    int i;
820
821    if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
822        return;
823
824    /*
825     * RCU locking needed to ensure object is not freed via put_object().
826     */
827    rcu_read_lock();
828    object = create_object((unsigned long)log->ptr, log->size,
829                   log->min_count, GFP_ATOMIC);
830    if (!object)
831        goto out;
832    spin_lock_irqsave(&object->lock, flags);
833    for (i = 0; i < log->trace_len; i++)
834        object->trace[i] = log->trace[i];
835    object->trace_len = log->trace_len;
836    spin_unlock_irqrestore(&object->lock, flags);
837out:
838    rcu_read_unlock();
839}
840
841/*
842 * Memory allocation function callback. This function is called from the
843 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
844 * vmalloc etc.).
845 */
846void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
847              gfp_t gfp)
848{
849    pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
850
851    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
852        create_object((unsigned long)ptr, size, min_count, gfp);
853    else if (atomic_read(&kmemleak_early_log))
854        log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
855}
856EXPORT_SYMBOL_GPL(kmemleak_alloc);
857
858/*
859 * Memory freeing function callback. This function is called from the kernel
860 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
861 */
862void __ref kmemleak_free(const void *ptr)
863{
864    pr_debug("%s(0x%p)\n", __func__, ptr);
865
866    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
867        delete_object_full((unsigned long)ptr);
868    else if (atomic_read(&kmemleak_early_log))
869        log_early(KMEMLEAK_FREE, ptr, 0, 0);
870}
871EXPORT_SYMBOL_GPL(kmemleak_free);
872
873/*
874 * Partial memory freeing function callback. This function is usually called
875 * from bootmem allocator when (part of) a memory block is freed.
876 */
877void __ref kmemleak_free_part(const void *ptr, size_t size)
878{
879    pr_debug("%s(0x%p)\n", __func__, ptr);
880
881    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
882        delete_object_part((unsigned long)ptr, size);
883    else if (atomic_read(&kmemleak_early_log))
884        log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
885}
886EXPORT_SYMBOL_GPL(kmemleak_free_part);
887
888/*
889 * Mark an already allocated memory block as a false positive. This will cause
890 * the block to no longer be reported as leak and always be scanned.
891 */
892void __ref kmemleak_not_leak(const void *ptr)
893{
894    pr_debug("%s(0x%p)\n", __func__, ptr);
895
896    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
897        make_gray_object((unsigned long)ptr);
898    else if (atomic_read(&kmemleak_early_log))
899        log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
900}
901EXPORT_SYMBOL(kmemleak_not_leak);
902
903/*
904 * Ignore a memory block. This is usually done when it is known that the
905 * corresponding block is not a leak and does not contain any references to
906 * other allocated memory blocks.
907 */
908void __ref kmemleak_ignore(const void *ptr)
909{
910    pr_debug("%s(0x%p)\n", __func__, ptr);
911
912    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
913        make_black_object((unsigned long)ptr);
914    else if (atomic_read(&kmemleak_early_log))
915        log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
916}
917EXPORT_SYMBOL(kmemleak_ignore);
918
919/*
920 * Limit the range to be scanned in an allocated memory block.
921 */
922void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
923{
924    pr_debug("%s(0x%p)\n", __func__, ptr);
925
926    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
927        add_scan_area((unsigned long)ptr, size, gfp);
928    else if (atomic_read(&kmemleak_early_log))
929        log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
930}
931EXPORT_SYMBOL(kmemleak_scan_area);
932
933/*
934 * Inform kmemleak not to scan the given memory block.
935 */
936void __ref kmemleak_no_scan(const void *ptr)
937{
938    pr_debug("%s(0x%p)\n", __func__, ptr);
939
940    if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
941        object_no_scan((unsigned long)ptr);
942    else if (atomic_read(&kmemleak_early_log))
943        log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
944}
945EXPORT_SYMBOL(kmemleak_no_scan);
946
947/*
948 * Update an object's checksum and return true if it was modified.
949 */
950static bool update_checksum(struct kmemleak_object *object)
951{
952    u32 old_csum = object->checksum;
953
954    if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
955        return false;
956
957    object->checksum = crc32(0, (void *)object->pointer, object->size);
958    return object->checksum != old_csum;
959}
960
961/*
962 * Memory scanning is a long process and it needs to be interruptable. This
963 * function checks whether such interrupt condition occured.
964 */
965static int scan_should_stop(void)
966{
967    if (!atomic_read(&kmemleak_enabled))
968        return 1;
969
970    /*
971     * This function may be called from either process or kthread context,
972     * hence the need to check for both stop conditions.
973     */
974    if (current->mm)
975        return signal_pending(current);
976    else
977        return kthread_should_stop();
978
979    return 0;
980}
981
982/*
983 * Scan a memory block (exclusive range) for valid pointers and add those
984 * found to the gray list.
985 */
986static void scan_block(void *_start, void *_end,
987               struct kmemleak_object *scanned, int allow_resched)
988{
989    unsigned long *ptr;
990    unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
991    unsigned long *end = _end - (BYTES_PER_POINTER - 1);
992
993    for (ptr = start; ptr < end; ptr++) {
994        struct kmemleak_object *object;
995        unsigned long flags;
996        unsigned long pointer;
997
998        if (allow_resched)
999            cond_resched();
1000        if (scan_should_stop())
1001            break;
1002
1003        /* don't scan uninitialized memory */
1004        if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1005                          BYTES_PER_POINTER))
1006            continue;
1007
1008        pointer = *ptr;
1009
1010        object = find_and_get_object(pointer, 1);
1011        if (!object)
1012            continue;
1013        if (object == scanned) {
1014            /* self referenced, ignore */
1015            put_object(object);
1016            continue;
1017        }
1018
1019        /*
1020         * Avoid the lockdep recursive warning on object->lock being
1021         * previously acquired in scan_object(). These locks are
1022         * enclosed by scan_mutex.
1023         */
1024        spin_lock_irqsave_nested(&object->lock, flags,
1025                     SINGLE_DEPTH_NESTING);
1026        if (!color_white(object)) {
1027            /* non-orphan, ignored or new */
1028            spin_unlock_irqrestore(&object->lock, flags);
1029            put_object(object);
1030            continue;
1031        }
1032
1033        /*
1034         * Increase the object's reference count (number of pointers
1035         * to the memory block). If this count reaches the required
1036         * minimum, the object's color will become gray and it will be
1037         * added to the gray_list.
1038         */
1039        object->count++;
1040        if (color_gray(object)) {
1041            list_add_tail(&object->gray_list, &gray_list);
1042            spin_unlock_irqrestore(&object->lock, flags);
1043            continue;
1044        }
1045
1046        spin_unlock_irqrestore(&object->lock, flags);
1047        put_object(object);
1048    }
1049}
1050
1051/*
1052 * Scan a memory block corresponding to a kmemleak_object. A condition is
1053 * that object->use_count >= 1.
1054 */
1055static void scan_object(struct kmemleak_object *object)
1056{
1057    struct kmemleak_scan_area *area;
1058    struct hlist_node *elem;
1059    unsigned long flags;
1060
1061    /*
1062     * Once the object->lock is acquired, the corresponding memory block
1063     * cannot be freed (the same lock is acquired in delete_object).
1064     */
1065    spin_lock_irqsave(&object->lock, flags);
1066    if (object->flags & OBJECT_NO_SCAN)
1067        goto out;
1068    if (!(object->flags & OBJECT_ALLOCATED))
1069        /* already freed object */
1070        goto out;
1071    if (hlist_empty(&object->area_list)) {
1072        void *start = (void *)object->pointer;
1073        void *end = (void *)(object->pointer + object->size);
1074
1075        while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1076               !(object->flags & OBJECT_NO_SCAN)) {
1077            scan_block(start, min(start + MAX_SCAN_SIZE, end),
1078                   object, 0);
1079            start += MAX_SCAN_SIZE;
1080
1081            spin_unlock_irqrestore(&object->lock, flags);
1082            cond_resched();
1083            spin_lock_irqsave(&object->lock, flags);
1084        }
1085    } else
1086        hlist_for_each_entry(area, elem, &object->area_list, node)
1087            scan_block((void *)area->start,
1088                   (void *)(area->start + area->size),
1089                   object, 0);
1090out:
1091    spin_unlock_irqrestore(&object->lock, flags);
1092}
1093
1094/*
1095 * Scan the objects already referenced (gray objects). More objects will be
1096 * referenced and, if there are no memory leaks, all the objects are scanned.
1097 */
1098static void scan_gray_list(void)
1099{
1100    struct kmemleak_object *object, *tmp;
1101
1102    /*
1103     * The list traversal is safe for both tail additions and removals
1104     * from inside the loop. The kmemleak objects cannot be freed from
1105     * outside the loop because their use_count was incremented.
1106     */
1107    object = list_entry(gray_list.next, typeof(*object), gray_list);
1108    while (&object->gray_list != &gray_list) {
1109        cond_resched();
1110
1111        /* may add new objects to the list */
1112        if (!scan_should_stop())
1113            scan_object(object);
1114
1115        tmp = list_entry(object->gray_list.next, typeof(*object),
1116                 gray_list);
1117
1118        /* remove the object from the list and release it */
1119        list_del(&object->gray_list);
1120        put_object(object);
1121
1122        object = tmp;
1123    }
1124    WARN_ON(!list_empty(&gray_list));
1125}
1126
1127/*
1128 * Scan data sections and all the referenced memory blocks allocated via the
1129 * kernel's standard allocators. This function must be called with the
1130 * scan_mutex held.
1131 */
1132static void kmemleak_scan(void)
1133{
1134    unsigned long flags;
1135    struct kmemleak_object *object;
1136    int i;
1137    int new_leaks = 0;
1138
1139    jiffies_last_scan = jiffies;
1140
1141    /* prepare the kmemleak_object's */
1142    rcu_read_lock();
1143    list_for_each_entry_rcu(object, &object_list, object_list) {
1144        spin_lock_irqsave(&object->lock, flags);
1145#ifdef DEBUG
1146        /*
1147         * With a few exceptions there should be a maximum of
1148         * 1 reference to any object at this point.
1149         */
1150        if (atomic_read(&object->use_count) > 1) {
1151            pr_debug("object->use_count = %d\n",
1152                 atomic_read(&object->use_count));
1153            dump_object_info(object);
1154        }
1155#endif
1156        /* reset the reference count (whiten the object) */
1157        object->count = 0;
1158        if (color_gray(object) && get_object(object))
1159            list_add_tail(&object->gray_list, &gray_list);
1160
1161        spin_unlock_irqrestore(&object->lock, flags);
1162    }
1163    rcu_read_unlock();
1164
1165    /* data/bss scanning */
1166    scan_block(_sdata, _edata, NULL, 1);
1167    scan_block(__bss_start, __bss_stop, NULL, 1);
1168
1169#ifdef CONFIG_SMP
1170    /* per-cpu sections scanning */
1171    for_each_possible_cpu(i)
1172        scan_block(__per_cpu_start + per_cpu_offset(i),
1173               __per_cpu_end + per_cpu_offset(i), NULL, 1);
1174#endif
1175
1176    /*
1177     * Struct page scanning for each node. The code below is not yet safe
1178     * with MEMORY_HOTPLUG.
1179     */
1180    for_each_online_node(i) {
1181        pg_data_t *pgdat = NODE_DATA(i);
1182        unsigned long start_pfn = pgdat->node_start_pfn;
1183        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1184        unsigned long pfn;
1185
1186        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1187            struct page *page;
1188
1189            if (!pfn_valid(pfn))
1190                continue;
1191            page = pfn_to_page(pfn);
1192            /* only scan if page is in use */
1193            if (page_count(page) == 0)
1194                continue;
1195            scan_block(page, page + 1, NULL, 1);
1196        }
1197    }
1198
1199    /*
1200     * Scanning the task stacks (may introduce false negatives).
1201     */
1202    if (kmemleak_stack_scan) {
1203        struct task_struct *p, *g;
1204
1205        read_lock(&tasklist_lock);
1206        do_each_thread(g, p) {
1207            scan_block(task_stack_page(p), task_stack_page(p) +
1208                   THREAD_SIZE, NULL, 0);
1209        } while_each_thread(g, p);
1210        read_unlock(&tasklist_lock);
1211    }
1212
1213    /*
1214     * Scan the objects already referenced from the sections scanned
1215     * above.
1216     */
1217    scan_gray_list();
1218
1219    /*
1220     * Check for new or unreferenced objects modified since the previous
1221     * scan and color them gray until the next scan.
1222     */
1223    rcu_read_lock();
1224    list_for_each_entry_rcu(object, &object_list, object_list) {
1225        spin_lock_irqsave(&object->lock, flags);
1226        if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1227            && update_checksum(object) && get_object(object)) {
1228            /* color it gray temporarily */
1229            object->count = object->min_count;
1230            list_add_tail(&object->gray_list, &gray_list);
1231        }
1232        spin_unlock_irqrestore(&object->lock, flags);
1233    }
1234    rcu_read_unlock();
1235
1236    /*
1237     * Re-scan the gray list for modified unreferenced objects.
1238     */
1239    scan_gray_list();
1240
1241    /*
1242     * If scanning was stopped do not report any new unreferenced objects.
1243     */
1244    if (scan_should_stop())
1245        return;
1246
1247    /*
1248     * Scanning result reporting.
1249     */
1250    rcu_read_lock();
1251    list_for_each_entry_rcu(object, &object_list, object_list) {
1252        spin_lock_irqsave(&object->lock, flags);
1253        if (unreferenced_object(object) &&
1254            !(object->flags & OBJECT_REPORTED)) {
1255            object->flags |= OBJECT_REPORTED;
1256            new_leaks++;
1257        }
1258        spin_unlock_irqrestore(&object->lock, flags);
1259    }
1260    rcu_read_unlock();
1261
1262    if (new_leaks)
1263        pr_info("%d new suspected memory leaks (see "
1264            "/sys/kernel/debug/kmemleak)\n", new_leaks);
1265
1266}
1267
1268/*
1269 * Thread function performing automatic memory scanning. Unreferenced objects
1270 * at the end of a memory scan are reported but only the first time.
1271 */
1272static int kmemleak_scan_thread(void *arg)
1273{
1274    static int first_run = 1;
1275
1276    pr_info("Automatic memory scanning thread started\n");
1277    set_user_nice(current, 10);
1278
1279    /*
1280     * Wait before the first scan to allow the system to fully initialize.
1281     */
1282    if (first_run) {
1283        first_run = 0;
1284        ssleep(SECS_FIRST_SCAN);
1285    }
1286
1287    while (!kthread_should_stop()) {
1288        signed long timeout = jiffies_scan_wait;
1289
1290        mutex_lock(&scan_mutex);
1291        kmemleak_scan();
1292        mutex_unlock(&scan_mutex);
1293
1294        /* wait before the next scan */
1295        while (timeout && !kthread_should_stop())
1296            timeout = schedule_timeout_interruptible(timeout);
1297    }
1298
1299    pr_info("Automatic memory scanning thread ended\n");
1300
1301    return 0;
1302}
1303
1304/*
1305 * Start the automatic memory scanning thread. This function must be called
1306 * with the scan_mutex held.
1307 */
1308static void start_scan_thread(void)
1309{
1310    if (scan_thread)
1311        return;
1312    scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1313    if (IS_ERR(scan_thread)) {
1314        pr_warning("Failed to create the scan thread\n");
1315        scan_thread = NULL;
1316    }
1317}
1318
1319/*
1320 * Stop the automatic memory scanning thread. This function must be called
1321 * with the scan_mutex held.
1322 */
1323static void stop_scan_thread(void)
1324{
1325    if (scan_thread) {
1326        kthread_stop(scan_thread);
1327        scan_thread = NULL;
1328    }
1329}
1330
1331/*
1332 * Iterate over the object_list and return the first valid object at or after
1333 * the required position with its use_count incremented. The function triggers
1334 * a memory scanning when the pos argument points to the first position.
1335 */
1336static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1337{
1338    struct kmemleak_object *object;
1339    loff_t n = *pos;
1340    int err;
1341
1342    err = mutex_lock_interruptible(&scan_mutex);
1343    if (err < 0)
1344        return ERR_PTR(err);
1345
1346    rcu_read_lock();
1347    list_for_each_entry_rcu(object, &object_list, object_list) {
1348        if (n-- > 0)
1349            continue;
1350        if (get_object(object))
1351            goto out;
1352    }
1353    object = NULL;
1354out:
1355    return object;
1356}
1357
1358/*
1359 * Return the next object in the object_list. The function decrements the
1360 * use_count of the previous object and increases that of the next one.
1361 */
1362static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1363{
1364    struct kmemleak_object *prev_obj = v;
1365    struct kmemleak_object *next_obj = NULL;
1366    struct list_head *n = &prev_obj->object_list;
1367
1368    ++(*pos);
1369
1370    list_for_each_continue_rcu(n, &object_list) {
1371        next_obj = list_entry(n, struct kmemleak_object, object_list);
1372        if (get_object(next_obj))
1373            break;
1374    }
1375
1376    put_object(prev_obj);
1377    return next_obj;
1378}
1379
1380/*
1381 * Decrement the use_count of the last object required, if any.
1382 */
1383static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1384{
1385    if (!IS_ERR(v)) {
1386        /*
1387         * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1388         * waiting was interrupted, so only release it if !IS_ERR.
1389         */
1390        rcu_read_unlock();
1391        mutex_unlock(&scan_mutex);
1392        if (v)
1393            put_object(v);
1394    }
1395}
1396
1397/*
1398 * Print the information for an unreferenced object to the seq file.
1399 */
1400static int kmemleak_seq_show(struct seq_file *seq, void *v)
1401{
1402    struct kmemleak_object *object = v;
1403    unsigned long flags;
1404
1405    spin_lock_irqsave(&object->lock, flags);
1406    if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1407        print_unreferenced(seq, object);
1408    spin_unlock_irqrestore(&object->lock, flags);
1409    return 0;
1410}
1411
1412static const struct seq_operations kmemleak_seq_ops = {
1413    .start = kmemleak_seq_start,
1414    .next = kmemleak_seq_next,
1415    .stop = kmemleak_seq_stop,
1416    .show = kmemleak_seq_show,
1417};
1418
1419static int kmemleak_open(struct inode *inode, struct file *file)
1420{
1421    if (!atomic_read(&kmemleak_enabled))
1422        return -EBUSY;
1423
1424    return seq_open(file, &kmemleak_seq_ops);
1425}
1426
1427static int kmemleak_release(struct inode *inode, struct file *file)
1428{
1429    return seq_release(inode, file);
1430}
1431
1432static int dump_str_object_info(const char *str)
1433{
1434    unsigned long flags;
1435    struct kmemleak_object *object;
1436    unsigned long addr;
1437
1438    addr= simple_strtoul(str, NULL, 0);
1439    object = find_and_get_object(addr, 0);
1440    if (!object) {
1441        pr_info("Unknown object at 0x%08lx\n", addr);
1442        return -EINVAL;
1443    }
1444
1445    spin_lock_irqsave(&object->lock, flags);
1446    dump_object_info(object);
1447    spin_unlock_irqrestore(&object->lock, flags);
1448
1449    put_object(object);
1450    return 0;
1451}
1452
1453/*
1454 * We use grey instead of black to ensure we can do future scans on the same
1455 * objects. If we did not do future scans these black objects could
1456 * potentially contain references to newly allocated objects in the future and
1457 * we'd end up with false positives.
1458 */
1459static void kmemleak_clear(void)
1460{
1461    struct kmemleak_object *object;
1462    unsigned long flags;
1463
1464    rcu_read_lock();
1465    list_for_each_entry_rcu(object, &object_list, object_list) {
1466        spin_lock_irqsave(&object->lock, flags);
1467        if ((object->flags & OBJECT_REPORTED) &&
1468            unreferenced_object(object))
1469            __paint_it(object, KMEMLEAK_GREY);
1470        spin_unlock_irqrestore(&object->lock, flags);
1471    }
1472    rcu_read_unlock();
1473}
1474
1475/*
1476 * File write operation to configure kmemleak at run-time. The following
1477 * commands can be written to the /sys/kernel/debug/kmemleak file:
1478 * off - disable kmemleak (irreversible)
1479 * stack=on - enable the task stacks scanning
1480 * stack=off - disable the tasks stacks scanning
1481 * scan=on - start the automatic memory scanning thread
1482 * scan=off - stop the automatic memory scanning thread
1483 * scan=... - set the automatic memory scanning period in seconds (0 to
1484 * disable it)
1485 * scan - trigger a memory scan
1486 * clear - mark all current reported unreferenced kmemleak objects as
1487 * grey to ignore printing them
1488 * dump=... - dump information about the object found at the given address
1489 */
1490static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1491                  size_t size, loff_t *ppos)
1492{
1493    char buf[64];
1494    int buf_size;
1495    int ret;
1496
1497    buf_size = min(size, (sizeof(buf) - 1));
1498    if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1499        return -EFAULT;
1500    buf[buf_size] = 0;
1501
1502    ret = mutex_lock_interruptible(&scan_mutex);
1503    if (ret < 0)
1504        return ret;
1505
1506    if (strncmp(buf, "off", 3) == 0)
1507        kmemleak_disable();
1508    else if (strncmp(buf, "stack=on", 8) == 0)
1509        kmemleak_stack_scan = 1;
1510    else if (strncmp(buf, "stack=off", 9) == 0)
1511        kmemleak_stack_scan = 0;
1512    else if (strncmp(buf, "scan=on", 7) == 0)
1513        start_scan_thread();
1514    else if (strncmp(buf, "scan=off", 8) == 0)
1515        stop_scan_thread();
1516    else if (strncmp(buf, "scan=", 5) == 0) {
1517        unsigned long secs;
1518
1519        ret = strict_strtoul(buf + 5, 0, &secs);
1520        if (ret < 0)
1521            goto out;
1522        stop_scan_thread();
1523        if (secs) {
1524            jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1525            start_scan_thread();
1526        }
1527    } else if (strncmp(buf, "scan", 4) == 0)
1528        kmemleak_scan();
1529    else if (strncmp(buf, "clear", 5) == 0)
1530        kmemleak_clear();
1531    else if (strncmp(buf, "dump=", 5) == 0)
1532        ret = dump_str_object_info(buf + 5);
1533    else
1534        ret = -EINVAL;
1535
1536out:
1537    mutex_unlock(&scan_mutex);
1538    if (ret < 0)
1539        return ret;
1540
1541    /* ignore the rest of the buffer, only one command at a time */
1542    *ppos += size;
1543    return size;
1544}
1545
1546static const struct file_operations kmemleak_fops = {
1547    .owner = THIS_MODULE,
1548    .open = kmemleak_open,
1549    .read = seq_read,
1550    .write = kmemleak_write,
1551    .llseek = seq_lseek,
1552    .release = kmemleak_release,
1553};
1554
1555/*
1556 * Perform the freeing of the kmemleak internal objects after waiting for any
1557 * current memory scan to complete.
1558 */
1559static void kmemleak_do_cleanup(struct work_struct *work)
1560{
1561    struct kmemleak_object *object;
1562
1563    mutex_lock(&scan_mutex);
1564    stop_scan_thread();
1565
1566    rcu_read_lock();
1567    list_for_each_entry_rcu(object, &object_list, object_list)
1568        delete_object_full(object->pointer);
1569    rcu_read_unlock();
1570    mutex_unlock(&scan_mutex);
1571}
1572
1573static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1574
1575/*
1576 * Disable kmemleak. No memory allocation/freeing will be traced once this
1577 * function is called. Disabling kmemleak is an irreversible operation.
1578 */
1579static void kmemleak_disable(void)
1580{
1581    /* atomically check whether it was already invoked */
1582    if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1583        return;
1584
1585    /* stop any memory operation tracing */
1586    atomic_set(&kmemleak_early_log, 0);
1587    atomic_set(&kmemleak_enabled, 0);
1588
1589    /* check whether it is too early for a kernel thread */
1590    if (atomic_read(&kmemleak_initialized))
1591        schedule_work(&cleanup_work);
1592
1593    pr_info("Kernel memory leak detector disabled\n");
1594}
1595
1596/*
1597 * Allow boot-time kmemleak disabling (enabled by default).
1598 */
1599static int kmemleak_boot_config(char *str)
1600{
1601    if (!str)
1602        return -EINVAL;
1603    if (strcmp(str, "off") == 0)
1604        kmemleak_disable();
1605    else if (strcmp(str, "on") != 0)
1606        return -EINVAL;
1607    return 0;
1608}
1609early_param("kmemleak", kmemleak_boot_config);
1610
1611/*
1612 * Kmemleak initialization.
1613 */
1614void __init kmemleak_init(void)
1615{
1616    int i;
1617    unsigned long flags;
1618
1619    jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1620    jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1621
1622    object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1623    scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1624    INIT_PRIO_TREE_ROOT(&object_tree_root);
1625
1626    /* the kernel is still in UP mode, so disabling the IRQs is enough */
1627    local_irq_save(flags);
1628    if (!atomic_read(&kmemleak_error)) {
1629        atomic_set(&kmemleak_enabled, 1);
1630        atomic_set(&kmemleak_early_log, 0);
1631    }
1632    local_irq_restore(flags);
1633
1634    /*
1635     * This is the point where tracking allocations is safe. Automatic
1636     * scanning is started during the late initcall. Add the early logged
1637     * callbacks to the kmemleak infrastructure.
1638     */
1639    for (i = 0; i < crt_early_log; i++) {
1640        struct early_log *log = &early_log[i];
1641
1642        switch (log->op_type) {
1643        case KMEMLEAK_ALLOC:
1644            early_alloc(log);
1645            break;
1646        case KMEMLEAK_FREE:
1647            kmemleak_free(log->ptr);
1648            break;
1649        case KMEMLEAK_FREE_PART:
1650            kmemleak_free_part(log->ptr, log->size);
1651            break;
1652        case KMEMLEAK_NOT_LEAK:
1653            kmemleak_not_leak(log->ptr);
1654            break;
1655        case KMEMLEAK_IGNORE:
1656            kmemleak_ignore(log->ptr);
1657            break;
1658        case KMEMLEAK_SCAN_AREA:
1659            kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1660            break;
1661        case KMEMLEAK_NO_SCAN:
1662            kmemleak_no_scan(log->ptr);
1663            break;
1664        default:
1665            WARN_ON(1);
1666        }
1667    }
1668}
1669
1670/*
1671 * Late initialization function.
1672 */
1673static int __init kmemleak_late_init(void)
1674{
1675    struct dentry *dentry;
1676
1677    atomic_set(&kmemleak_initialized, 1);
1678
1679    if (atomic_read(&kmemleak_error)) {
1680        /*
1681         * Some error occured and kmemleak was disabled. There is a
1682         * small chance that kmemleak_disable() was called immediately
1683         * after setting kmemleak_initialized and we may end up with
1684         * two clean-up threads but serialized by scan_mutex.
1685         */
1686        schedule_work(&cleanup_work);
1687        return -ENOMEM;
1688    }
1689
1690    dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1691                     &kmemleak_fops);
1692    if (!dentry)
1693        pr_warning("Failed to create the debugfs kmemleak file\n");
1694    mutex_lock(&scan_mutex);
1695    start_scan_thread();
1696    mutex_unlock(&scan_mutex);
1697
1698    pr_info("Kernel memory leak detector initialized\n");
1699
1700    return 0;
1701}
1702late_initcall(kmemleak_late_init);
1703

Archive Download this file



interactive