Root/
1 | /* |
2 | * Modified to interface to the Linux kernel |
3 | * Copyright (c) 2009, Intel Corporation. |
4 | * |
5 | * This program is free software; you can redistribute it and/or modify it |
6 | * under the terms and conditions of the GNU General Public License, |
7 | * version 2, as published by the Free Software Foundation. |
8 | * |
9 | * This program is distributed in the hope it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
12 | * more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License along with |
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
16 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
17 | */ |
18 | |
19 | /* -------------------------------------------------------------------------- |
20 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. |
21 | * This implementation is herby placed in the public domain. |
22 | * The authors offers no warranty. Use at your own risk. |
23 | * Please send bug reports to the authors. |
24 | * Last modified: 17 APR 08, 1700 PDT |
25 | * ----------------------------------------------------------------------- */ |
26 | |
27 | #include <linux/init.h> |
28 | #include <linux/types.h> |
29 | #include <linux/crypto.h> |
30 | #include <linux/scatterlist.h> |
31 | #include <asm/byteorder.h> |
32 | #include <crypto/scatterwalk.h> |
33 | #include <crypto/vmac.h> |
34 | #include <crypto/internal/hash.h> |
35 | |
36 | /* |
37 | * Constants and masks |
38 | */ |
39 | #define UINT64_C(x) x##ULL |
40 | const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
41 | const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ |
42 | const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ |
43 | const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ |
44 | const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ |
45 | |
46 | #ifdef __LITTLE_ENDIAN |
47 | #define INDEX_HIGH 1 |
48 | #define INDEX_LOW 0 |
49 | #else |
50 | #define INDEX_HIGH 0 |
51 | #define INDEX_LOW 1 |
52 | #endif |
53 | |
54 | /* |
55 | * The following routines are used in this implementation. They are |
56 | * written via macros to simulate zero-overhead call-by-reference. |
57 | * |
58 | * MUL64: 64x64->128-bit multiplication |
59 | * PMUL64: assumes top bits cleared on inputs |
60 | * ADD128: 128x128->128-bit addition |
61 | */ |
62 | |
63 | #define ADD128(rh, rl, ih, il) \ |
64 | do { \ |
65 | u64 _il = (il); \ |
66 | (rl) += (_il); \ |
67 | if ((rl) < (_il)) \ |
68 | (rh)++; \ |
69 | (rh) += (ih); \ |
70 | } while (0) |
71 | |
72 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) |
73 | |
74 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ |
75 | do { \ |
76 | u64 _i1 = (i1), _i2 = (i2); \ |
77 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ |
78 | rh = MUL32(_i1>>32, _i2>>32); \ |
79 | rl = MUL32(_i1, _i2); \ |
80 | ADD128(rh, rl, (m >> 32), (m << 32)); \ |
81 | } while (0) |
82 | |
83 | #define MUL64(rh, rl, i1, i2) \ |
84 | do { \ |
85 | u64 _i1 = (i1), _i2 = (i2); \ |
86 | u64 m1 = MUL32(_i1, _i2>>32); \ |
87 | u64 m2 = MUL32(_i1>>32, _i2); \ |
88 | rh = MUL32(_i1>>32, _i2>>32); \ |
89 | rl = MUL32(_i1, _i2); \ |
90 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ |
91 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ |
92 | } while (0) |
93 | |
94 | /* |
95 | * For highest performance the L1 NH and L2 polynomial hashes should be |
96 | * carefully implemented to take advantage of one's target architechture. |
97 | * Here these two hash functions are defined multiple time; once for |
98 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once |
99 | * for the rest (32-bit) architectures. |
100 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). |
101 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of |
102 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two |
103 | * NH computations at once). |
104 | */ |
105 | |
106 | #ifdef CONFIG_64BIT |
107 | |
108 | #define nh_16(mp, kp, nw, rh, rl) \ |
109 | do { \ |
110 | int i; u64 th, tl; \ |
111 | rh = rl = 0; \ |
112 | for (i = 0; i < nw; i += 2) { \ |
113 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ |
114 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
115 | ADD128(rh, rl, th, tl); \ |
116 | } \ |
117 | } while (0) |
118 | |
119 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
120 | do { \ |
121 | int i; u64 th, tl; \ |
122 | rh1 = rl1 = rh = rl = 0; \ |
123 | for (i = 0; i < nw; i += 2) { \ |
124 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ |
125 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
126 | ADD128(rh, rl, th, tl); \ |
127 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \ |
128 | le64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
129 | ADD128(rh1, rl1, th, tl); \ |
130 | } \ |
131 | } while (0) |
132 | |
133 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ |
134 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
135 | do { \ |
136 | int i; u64 th, tl; \ |
137 | rh = rl = 0; \ |
138 | for (i = 0; i < nw; i += 8) { \ |
139 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ |
140 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
141 | ADD128(rh, rl, th, tl); \ |
142 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
143 | le64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
144 | ADD128(rh, rl, th, tl); \ |
145 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
146 | le64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
147 | ADD128(rh, rl, th, tl); \ |
148 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
149 | le64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
150 | ADD128(rh, rl, th, tl); \ |
151 | } \ |
152 | } while (0) |
153 | |
154 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
155 | do { \ |
156 | int i; u64 th, tl; \ |
157 | rh1 = rl1 = rh = rl = 0; \ |
158 | for (i = 0; i < nw; i += 8) { \ |
159 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \ |
160 | le64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
161 | ADD128(rh, rl, th, tl); \ |
162 | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \ |
163 | le64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
164 | ADD128(rh1, rl1, th, tl); \ |
165 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
166 | le64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
167 | ADD128(rh, rl, th, tl); \ |
168 | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
169 | le64_to_cpup((mp)+i+3)+(kp)[i+5]); \ |
170 | ADD128(rh1, rl1, th, tl); \ |
171 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
172 | le64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
173 | ADD128(rh, rl, th, tl); \ |
174 | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
175 | le64_to_cpup((mp)+i+5)+(kp)[i+7]); \ |
176 | ADD128(rh1, rl1, th, tl); \ |
177 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
178 | le64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
179 | ADD128(rh, rl, th, tl); \ |
180 | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
181 | le64_to_cpup((mp)+i+7)+(kp)[i+9]); \ |
182 | ADD128(rh1, rl1, th, tl); \ |
183 | } \ |
184 | } while (0) |
185 | #endif |
186 | |
187 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
188 | do { \ |
189 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ |
190 | /* compute ab*cd, put bd into result registers */ \ |
191 | PMUL64(t3h, t3l, al, kh); \ |
192 | PMUL64(t2h, t2l, ah, kl); \ |
193 | PMUL64(t1h, t1l, ah, 2*kh); \ |
194 | PMUL64(ah, al, al, kl); \ |
195 | /* add 2 * ac to result */ \ |
196 | ADD128(ah, al, t1h, t1l); \ |
197 | /* add together ad + bc */ \ |
198 | ADD128(t2h, t2l, t3h, t3l); \ |
199 | /* now (ah,al), (t2l,2*t2h) need summing */ \ |
200 | /* first add the high registers, carrying into t2h */ \ |
201 | ADD128(t2h, ah, z, t2l); \ |
202 | /* double t2h and add top bit of ah */ \ |
203 | t2h = 2 * t2h + (ah >> 63); \ |
204 | ah &= m63; \ |
205 | /* now add the low registers */ \ |
206 | ADD128(ah, al, mh, ml); \ |
207 | ADD128(ah, al, z, t2h); \ |
208 | } while (0) |
209 | |
210 | #else /* ! CONFIG_64BIT */ |
211 | |
212 | #ifndef nh_16 |
213 | #define nh_16(mp, kp, nw, rh, rl) \ |
214 | do { \ |
215 | u64 t1, t2, m1, m2, t; \ |
216 | int i; \ |
217 | rh = rl = t = 0; \ |
218 | for (i = 0; i < nw; i += 2) { \ |
219 | t1 = le64_to_cpup(mp+i) + kp[i]; \ |
220 | t2 = le64_to_cpup(mp+i+1) + kp[i+1]; \ |
221 | m2 = MUL32(t1 >> 32, t2); \ |
222 | m1 = MUL32(t1, t2 >> 32); \ |
223 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ |
224 | MUL32(t1, t2)); \ |
225 | rh += (u64)(u32)(m1 >> 32) \ |
226 | + (u32)(m2 >> 32); \ |
227 | t += (u64)(u32)m1 + (u32)m2; \ |
228 | } \ |
229 | ADD128(rh, rl, (t >> 32), (t << 32)); \ |
230 | } while (0) |
231 | #endif |
232 | |
233 | static void poly_step_func(u64 *ahi, u64 *alo, |
234 | const u64 *kh, const u64 *kl, |
235 | const u64 *mh, const u64 *ml) |
236 | { |
237 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) |
238 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) |
239 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) |
240 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) |
241 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) |
242 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) |
243 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) |
244 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) |
245 | |
246 | u64 p, q, t; |
247 | u32 t2; |
248 | |
249 | p = MUL32(a3, k3); |
250 | p += p; |
251 | p += *(u64 *)mh; |
252 | p += MUL32(a0, k2); |
253 | p += MUL32(a1, k1); |
254 | p += MUL32(a2, k0); |
255 | t = (u32)(p); |
256 | p >>= 32; |
257 | p += MUL32(a0, k3); |
258 | p += MUL32(a1, k2); |
259 | p += MUL32(a2, k1); |
260 | p += MUL32(a3, k0); |
261 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; |
262 | p >>= 31; |
263 | p += (u64)(((u32 *)ml)[INDEX_LOW]); |
264 | p += MUL32(a0, k0); |
265 | q = MUL32(a1, k3); |
266 | q += MUL32(a2, k2); |
267 | q += MUL32(a3, k1); |
268 | q += q; |
269 | p += q; |
270 | t2 = (u32)(p); |
271 | p >>= 32; |
272 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); |
273 | p += MUL32(a0, k1); |
274 | p += MUL32(a1, k0); |
275 | q = MUL32(a2, k3); |
276 | q += MUL32(a3, k2); |
277 | q += q; |
278 | p += q; |
279 | *(u64 *)(alo) = (p << 32) | t2; |
280 | p >>= 32; |
281 | *(u64 *)(ahi) = p + t; |
282 | |
283 | #undef a0 |
284 | #undef a1 |
285 | #undef a2 |
286 | #undef a3 |
287 | #undef k0 |
288 | #undef k1 |
289 | #undef k2 |
290 | #undef k3 |
291 | } |
292 | |
293 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
294 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) |
295 | |
296 | #endif /* end of specialized NH and poly definitions */ |
297 | |
298 | /* At least nh_16 is defined. Defined others as needed here */ |
299 | #ifndef nh_16_2 |
300 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
301 | do { \ |
302 | nh_16(mp, kp, nw, rh, rl); \ |
303 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ |
304 | } while (0) |
305 | #endif |
306 | #ifndef nh_vmac_nhbytes |
307 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
308 | nh_16(mp, kp, nw, rh, rl) |
309 | #endif |
310 | #ifndef nh_vmac_nhbytes_2 |
311 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
312 | do { \ |
313 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ |
314 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ |
315 | } while (0) |
316 | #endif |
317 | |
318 | static void vhash_abort(struct vmac_ctx *ctx) |
319 | { |
320 | ctx->polytmp[0] = ctx->polykey[0] ; |
321 | ctx->polytmp[1] = ctx->polykey[1] ; |
322 | ctx->first_block_processed = 0; |
323 | } |
324 | |
325 | static u64 l3hash(u64 p1, u64 p2, |
326 | u64 k1, u64 k2, u64 len) |
327 | { |
328 | u64 rh, rl, t, z = 0; |
329 | |
330 | /* fully reduce (p1,p2)+(len,0) mod p127 */ |
331 | t = p1 >> 63; |
332 | p1 &= m63; |
333 | ADD128(p1, p2, len, t); |
334 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ |
335 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); |
336 | ADD128(p1, p2, z, t); |
337 | p1 &= m63; |
338 | |
339 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ |
340 | t = p1 + (p2 >> 32); |
341 | t += (t >> 32); |
342 | t += (u32)t > 0xfffffffeu; |
343 | p1 += (t >> 32); |
344 | p2 += (p1 << 32); |
345 | |
346 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ |
347 | p1 += k1; |
348 | p1 += (0 - (p1 < k1)) & 257; |
349 | p2 += k2; |
350 | p2 += (0 - (p2 < k2)) & 257; |
351 | |
352 | /* compute (p1+k1)*(p2+k2)%p64 */ |
353 | MUL64(rh, rl, p1, p2); |
354 | t = rh >> 56; |
355 | ADD128(t, rl, z, rh); |
356 | rh <<= 8; |
357 | ADD128(t, rl, z, rh); |
358 | t += t << 8; |
359 | rl += t; |
360 | rl += (0 - (rl < t)) & 257; |
361 | rl += (0 - (rl > p64-1)) & 257; |
362 | return rl; |
363 | } |
364 | |
365 | static void vhash_update(const unsigned char *m, |
366 | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ |
367 | struct vmac_ctx *ctx) |
368 | { |
369 | u64 rh, rl, *mptr; |
370 | const u64 *kptr = (u64 *)ctx->nhkey; |
371 | int i; |
372 | u64 ch, cl; |
373 | u64 pkh = ctx->polykey[0]; |
374 | u64 pkl = ctx->polykey[1]; |
375 | |
376 | mptr = (u64 *)m; |
377 | i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ |
378 | |
379 | ch = ctx->polytmp[0]; |
380 | cl = ctx->polytmp[1]; |
381 | |
382 | if (!ctx->first_block_processed) { |
383 | ctx->first_block_processed = 1; |
384 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
385 | rh &= m62; |
386 | ADD128(ch, cl, rh, rl); |
387 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
388 | i--; |
389 | } |
390 | |
391 | while (i--) { |
392 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
393 | rh &= m62; |
394 | poly_step(ch, cl, pkh, pkl, rh, rl); |
395 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
396 | } |
397 | |
398 | ctx->polytmp[0] = ch; |
399 | ctx->polytmp[1] = cl; |
400 | } |
401 | |
402 | static u64 vhash(unsigned char m[], unsigned int mbytes, |
403 | u64 *tagl, struct vmac_ctx *ctx) |
404 | { |
405 | u64 rh, rl, *mptr; |
406 | const u64 *kptr = (u64 *)ctx->nhkey; |
407 | int i, remaining; |
408 | u64 ch, cl; |
409 | u64 pkh = ctx->polykey[0]; |
410 | u64 pkl = ctx->polykey[1]; |
411 | |
412 | mptr = (u64 *)m; |
413 | i = mbytes / VMAC_NHBYTES; |
414 | remaining = mbytes % VMAC_NHBYTES; |
415 | |
416 | if (ctx->first_block_processed) { |
417 | ch = ctx->polytmp[0]; |
418 | cl = ctx->polytmp[1]; |
419 | } else if (i) { |
420 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); |
421 | ch &= m62; |
422 | ADD128(ch, cl, pkh, pkl); |
423 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
424 | i--; |
425 | } else if (remaining) { |
426 | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); |
427 | ch &= m62; |
428 | ADD128(ch, cl, pkh, pkl); |
429 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
430 | goto do_l3; |
431 | } else {/* Empty String */ |
432 | ch = pkh; cl = pkl; |
433 | goto do_l3; |
434 | } |
435 | |
436 | while (i--) { |
437 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
438 | rh &= m62; |
439 | poly_step(ch, cl, pkh, pkl, rh, rl); |
440 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
441 | } |
442 | if (remaining) { |
443 | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); |
444 | rh &= m62; |
445 | poly_step(ch, cl, pkh, pkl, rh, rl); |
446 | } |
447 | |
448 | do_l3: |
449 | vhash_abort(ctx); |
450 | remaining *= 8; |
451 | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); |
452 | } |
453 | |
454 | static u64 vmac(unsigned char m[], unsigned int mbytes, |
455 | unsigned char n[16], u64 *tagl, |
456 | struct vmac_ctx_t *ctx) |
457 | { |
458 | u64 *in_n, *out_p; |
459 | u64 p, h; |
460 | int i; |
461 | |
462 | in_n = ctx->__vmac_ctx.cached_nonce; |
463 | out_p = ctx->__vmac_ctx.cached_aes; |
464 | |
465 | i = n[15] & 1; |
466 | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { |
467 | in_n[0] = *(u64 *)(n); |
468 | in_n[1] = *(u64 *)(n+8); |
469 | ((unsigned char *)in_n)[15] &= 0xFE; |
470 | crypto_cipher_encrypt_one(ctx->child, |
471 | (unsigned char *)out_p, (unsigned char *)in_n); |
472 | |
473 | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); |
474 | } |
475 | p = be64_to_cpup(out_p + i); |
476 | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); |
477 | return p + h; |
478 | } |
479 | |
480 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) |
481 | { |
482 | u64 in[2] = {0}, out[2]; |
483 | unsigned i; |
484 | int err = 0; |
485 | |
486 | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); |
487 | if (err) |
488 | return err; |
489 | |
490 | /* Fill nh key */ |
491 | ((unsigned char *)in)[0] = 0x80; |
492 | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { |
493 | crypto_cipher_encrypt_one(ctx->child, |
494 | (unsigned char *)out, (unsigned char *)in); |
495 | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); |
496 | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); |
497 | ((unsigned char *)in)[15] += 1; |
498 | } |
499 | |
500 | /* Fill poly key */ |
501 | ((unsigned char *)in)[0] = 0xC0; |
502 | in[1] = 0; |
503 | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { |
504 | crypto_cipher_encrypt_one(ctx->child, |
505 | (unsigned char *)out, (unsigned char *)in); |
506 | ctx->__vmac_ctx.polytmp[i] = |
507 | ctx->__vmac_ctx.polykey[i] = |
508 | be64_to_cpup(out) & mpoly; |
509 | ctx->__vmac_ctx.polytmp[i+1] = |
510 | ctx->__vmac_ctx.polykey[i+1] = |
511 | be64_to_cpup(out+1) & mpoly; |
512 | ((unsigned char *)in)[15] += 1; |
513 | } |
514 | |
515 | /* Fill ip key */ |
516 | ((unsigned char *)in)[0] = 0xE0; |
517 | in[1] = 0; |
518 | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { |
519 | do { |
520 | crypto_cipher_encrypt_one(ctx->child, |
521 | (unsigned char *)out, (unsigned char *)in); |
522 | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); |
523 | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); |
524 | ((unsigned char *)in)[15] += 1; |
525 | } while (ctx->__vmac_ctx.l3key[i] >= p64 |
526 | || ctx->__vmac_ctx.l3key[i+1] >= p64); |
527 | } |
528 | |
529 | /* Invalidate nonce/aes cache and reset other elements */ |
530 | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ |
531 | ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ |
532 | ctx->__vmac_ctx.first_block_processed = 0; |
533 | |
534 | return err; |
535 | } |
536 | |
537 | static int vmac_setkey(struct crypto_shash *parent, |
538 | const u8 *key, unsigned int keylen) |
539 | { |
540 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
541 | |
542 | if (keylen != VMAC_KEY_LEN) { |
543 | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); |
544 | return -EINVAL; |
545 | } |
546 | |
547 | return vmac_set_key((u8 *)key, ctx); |
548 | } |
549 | |
550 | static int vmac_init(struct shash_desc *pdesc) |
551 | { |
552 | struct crypto_shash *parent = pdesc->tfm; |
553 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
554 | |
555 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); |
556 | return 0; |
557 | } |
558 | |
559 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, |
560 | unsigned int len) |
561 | { |
562 | struct crypto_shash *parent = pdesc->tfm; |
563 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
564 | |
565 | vhash_update(p, len, &ctx->__vmac_ctx); |
566 | |
567 | return 0; |
568 | } |
569 | |
570 | static int vmac_final(struct shash_desc *pdesc, u8 *out) |
571 | { |
572 | struct crypto_shash *parent = pdesc->tfm; |
573 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
574 | vmac_t mac; |
575 | u8 nonce[16] = {}; |
576 | |
577 | mac = vmac(NULL, 0, nonce, NULL, ctx); |
578 | memcpy(out, &mac, sizeof(vmac_t)); |
579 | memset(&mac, 0, sizeof(vmac_t)); |
580 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); |
581 | return 0; |
582 | } |
583 | |
584 | static int vmac_init_tfm(struct crypto_tfm *tfm) |
585 | { |
586 | struct crypto_cipher *cipher; |
587 | struct crypto_instance *inst = (void *)tfm->__crt_alg; |
588 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
589 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
590 | |
591 | cipher = crypto_spawn_cipher(spawn); |
592 | if (IS_ERR(cipher)) |
593 | return PTR_ERR(cipher); |
594 | |
595 | ctx->child = cipher; |
596 | return 0; |
597 | } |
598 | |
599 | static void vmac_exit_tfm(struct crypto_tfm *tfm) |
600 | { |
601 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
602 | crypto_free_cipher(ctx->child); |
603 | } |
604 | |
605 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) |
606 | { |
607 | struct shash_instance *inst; |
608 | struct crypto_alg *alg; |
609 | int err; |
610 | |
611 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); |
612 | if (err) |
613 | return err; |
614 | |
615 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, |
616 | CRYPTO_ALG_TYPE_MASK); |
617 | if (IS_ERR(alg)) |
618 | return PTR_ERR(alg); |
619 | |
620 | inst = shash_alloc_instance("vmac", alg); |
621 | err = PTR_ERR(inst); |
622 | if (IS_ERR(inst)) |
623 | goto out_put_alg; |
624 | |
625 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, |
626 | shash_crypto_instance(inst), |
627 | CRYPTO_ALG_TYPE_MASK); |
628 | if (err) |
629 | goto out_free_inst; |
630 | |
631 | inst->alg.base.cra_priority = alg->cra_priority; |
632 | inst->alg.base.cra_blocksize = alg->cra_blocksize; |
633 | inst->alg.base.cra_alignmask = alg->cra_alignmask; |
634 | |
635 | inst->alg.digestsize = sizeof(vmac_t); |
636 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); |
637 | inst->alg.base.cra_init = vmac_init_tfm; |
638 | inst->alg.base.cra_exit = vmac_exit_tfm; |
639 | |
640 | inst->alg.init = vmac_init; |
641 | inst->alg.update = vmac_update; |
642 | inst->alg.final = vmac_final; |
643 | inst->alg.setkey = vmac_setkey; |
644 | |
645 | err = shash_register_instance(tmpl, inst); |
646 | if (err) { |
647 | out_free_inst: |
648 | shash_free_instance(shash_crypto_instance(inst)); |
649 | } |
650 | |
651 | out_put_alg: |
652 | crypto_mod_put(alg); |
653 | return err; |
654 | } |
655 | |
656 | static struct crypto_template vmac_tmpl = { |
657 | .name = "vmac", |
658 | .create = vmac_create, |
659 | .free = shash_free_instance, |
660 | .module = THIS_MODULE, |
661 | }; |
662 | |
663 | static int __init vmac_module_init(void) |
664 | { |
665 | return crypto_register_template(&vmac_tmpl); |
666 | } |
667 | |
668 | static void __exit vmac_module_exit(void) |
669 | { |
670 | crypto_unregister_template(&vmac_tmpl); |
671 | } |
672 | |
673 | module_init(vmac_module_init); |
674 | module_exit(vmac_module_exit); |
675 | |
676 | MODULE_LICENSE("GPL"); |
677 | MODULE_DESCRIPTION("VMAC hash algorithm"); |
678 | |
679 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9