Root/crypto/vmac.c

1/*
2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 */
18
19/* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
26
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/crypto.h>
30#include <linux/scatterlist.h>
31#include <asm/byteorder.h>
32#include <crypto/scatterwalk.h>
33#include <crypto/vmac.h>
34#include <crypto/internal/hash.h>
35
36/*
37 * Constants and masks
38 */
39#define UINT64_C(x) x##ULL
40const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
41const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
42const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
43const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
44const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
45
46#ifdef __LITTLE_ENDIAN
47#define INDEX_HIGH 1
48#define INDEX_LOW 0
49#else
50#define INDEX_HIGH 0
51#define INDEX_LOW 1
52#endif
53
54/*
55 * The following routines are used in this implementation. They are
56 * written via macros to simulate zero-overhead call-by-reference.
57 *
58 * MUL64: 64x64->128-bit multiplication
59 * PMUL64: assumes top bits cleared on inputs
60 * ADD128: 128x128->128-bit addition
61 */
62
63#define ADD128(rh, rl, ih, il) \
64    do { \
65        u64 _il = (il); \
66        (rl) += (_il); \
67        if ((rl) < (_il)) \
68            (rh)++; \
69        (rh) += (ih); \
70    } while (0)
71
72#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
73
74#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
75    do { \
76        u64 _i1 = (i1), _i2 = (i2); \
77        u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
78        rh = MUL32(_i1>>32, _i2>>32); \
79        rl = MUL32(_i1, _i2); \
80        ADD128(rh, rl, (m >> 32), (m << 32)); \
81    } while (0)
82
83#define MUL64(rh, rl, i1, i2) \
84    do { \
85        u64 _i1 = (i1), _i2 = (i2); \
86        u64 m1 = MUL32(_i1, _i2>>32); \
87        u64 m2 = MUL32(_i1>>32, _i2); \
88        rh = MUL32(_i1>>32, _i2>>32); \
89        rl = MUL32(_i1, _i2); \
90        ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
91        ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
92    } while (0)
93
94/*
95 * For highest performance the L1 NH and L2 polynomial hashes should be
96 * carefully implemented to take advantage of one's target architechture.
97 * Here these two hash functions are defined multiple time; once for
98 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
99 * for the rest (32-bit) architectures.
100 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
101 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
102 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
103 * NH computations at once).
104 */
105
106#ifdef CONFIG_64BIT
107
108#define nh_16(mp, kp, nw, rh, rl) \
109    do { \
110        int i; u64 th, tl; \
111        rh = rl = 0; \
112        for (i = 0; i < nw; i += 2) { \
113            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
114                le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
115            ADD128(rh, rl, th, tl); \
116        } \
117    } while (0)
118
119#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
120    do { \
121        int i; u64 th, tl; \
122        rh1 = rl1 = rh = rl = 0; \
123        for (i = 0; i < nw; i += 2) { \
124            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
125                le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
126            ADD128(rh, rl, th, tl); \
127            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \
128                le64_to_cpup((mp)+i+1)+(kp)[i+3]); \
129            ADD128(rh1, rl1, th, tl); \
130        } \
131    } while (0)
132
133#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
134#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
135    do { \
136        int i; u64 th, tl; \
137        rh = rl = 0; \
138        for (i = 0; i < nw; i += 8) { \
139            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
140                le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
141            ADD128(rh, rl, th, tl); \
142            MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \
143                le64_to_cpup((mp)+i+3)+(kp)[i+3]); \
144            ADD128(rh, rl, th, tl); \
145            MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \
146                le64_to_cpup((mp)+i+5)+(kp)[i+5]); \
147            ADD128(rh, rl, th, tl); \
148            MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \
149                le64_to_cpup((mp)+i+7)+(kp)[i+7]); \
150            ADD128(rh, rl, th, tl); \
151        } \
152    } while (0)
153
154#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
155    do { \
156        int i; u64 th, tl; \
157        rh1 = rl1 = rh = rl = 0; \
158        for (i = 0; i < nw; i += 8) { \
159            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i], \
160                le64_to_cpup((mp)+i+1)+(kp)[i+1]); \
161            ADD128(rh, rl, th, tl); \
162            MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2], \
163                le64_to_cpup((mp)+i+1)+(kp)[i+3]); \
164            ADD128(rh1, rl1, th, tl); \
165            MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2], \
166                le64_to_cpup((mp)+i+3)+(kp)[i+3]); \
167            ADD128(rh, rl, th, tl); \
168            MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4], \
169                le64_to_cpup((mp)+i+3)+(kp)[i+5]); \
170            ADD128(rh1, rl1, th, tl); \
171            MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4], \
172                le64_to_cpup((mp)+i+5)+(kp)[i+5]); \
173            ADD128(rh, rl, th, tl); \
174            MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6], \
175                le64_to_cpup((mp)+i+5)+(kp)[i+7]); \
176            ADD128(rh1, rl1, th, tl); \
177            MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6], \
178                le64_to_cpup((mp)+i+7)+(kp)[i+7]); \
179            ADD128(rh, rl, th, tl); \
180            MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8], \
181                le64_to_cpup((mp)+i+7)+(kp)[i+9]); \
182            ADD128(rh1, rl1, th, tl); \
183        } \
184    } while (0)
185#endif
186
187#define poly_step(ah, al, kh, kl, mh, ml) \
188    do { \
189        u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
190        /* compute ab*cd, put bd into result registers */ \
191        PMUL64(t3h, t3l, al, kh); \
192        PMUL64(t2h, t2l, ah, kl); \
193        PMUL64(t1h, t1l, ah, 2*kh); \
194        PMUL64(ah, al, al, kl); \
195        /* add 2 * ac to result */ \
196        ADD128(ah, al, t1h, t1l); \
197        /* add together ad + bc */ \
198        ADD128(t2h, t2l, t3h, t3l); \
199        /* now (ah,al), (t2l,2*t2h) need summing */ \
200        /* first add the high registers, carrying into t2h */ \
201        ADD128(t2h, ah, z, t2l); \
202        /* double t2h and add top bit of ah */ \
203        t2h = 2 * t2h + (ah >> 63); \
204        ah &= m63; \
205        /* now add the low registers */ \
206        ADD128(ah, al, mh, ml); \
207        ADD128(ah, al, z, t2h); \
208    } while (0)
209
210#else /* ! CONFIG_64BIT */
211
212#ifndef nh_16
213#define nh_16(mp, kp, nw, rh, rl) \
214    do { \
215        u64 t1, t2, m1, m2, t; \
216        int i; \
217        rh = rl = t = 0; \
218        for (i = 0; i < nw; i += 2) { \
219            t1 = le64_to_cpup(mp+i) + kp[i]; \
220            t2 = le64_to_cpup(mp+i+1) + kp[i+1]; \
221            m2 = MUL32(t1 >> 32, t2); \
222            m1 = MUL32(t1, t2 >> 32); \
223            ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
224                MUL32(t1, t2)); \
225            rh += (u64)(u32)(m1 >> 32) \
226                + (u32)(m2 >> 32); \
227            t += (u64)(u32)m1 + (u32)m2; \
228        } \
229        ADD128(rh, rl, (t >> 32), (t << 32)); \
230    } while (0)
231#endif
232
233static void poly_step_func(u64 *ahi, u64 *alo,
234            const u64 *kh, const u64 *kl,
235            const u64 *mh, const u64 *ml)
236{
237#define a0 (*(((u32 *)alo)+INDEX_LOW))
238#define a1 (*(((u32 *)alo)+INDEX_HIGH))
239#define a2 (*(((u32 *)ahi)+INDEX_LOW))
240#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
241#define k0 (*(((u32 *)kl)+INDEX_LOW))
242#define k1 (*(((u32 *)kl)+INDEX_HIGH))
243#define k2 (*(((u32 *)kh)+INDEX_LOW))
244#define k3 (*(((u32 *)kh)+INDEX_HIGH))
245
246    u64 p, q, t;
247    u32 t2;
248
249    p = MUL32(a3, k3);
250    p += p;
251    p += *(u64 *)mh;
252    p += MUL32(a0, k2);
253    p += MUL32(a1, k1);
254    p += MUL32(a2, k0);
255    t = (u32)(p);
256    p >>= 32;
257    p += MUL32(a0, k3);
258    p += MUL32(a1, k2);
259    p += MUL32(a2, k1);
260    p += MUL32(a3, k0);
261    t |= ((u64)((u32)p & 0x7fffffff)) << 32;
262    p >>= 31;
263    p += (u64)(((u32 *)ml)[INDEX_LOW]);
264    p += MUL32(a0, k0);
265    q = MUL32(a1, k3);
266    q += MUL32(a2, k2);
267    q += MUL32(a3, k1);
268    q += q;
269    p += q;
270    t2 = (u32)(p);
271    p >>= 32;
272    p += (u64)(((u32 *)ml)[INDEX_HIGH]);
273    p += MUL32(a0, k1);
274    p += MUL32(a1, k0);
275    q = MUL32(a2, k3);
276    q += MUL32(a3, k2);
277    q += q;
278    p += q;
279    *(u64 *)(alo) = (p << 32) | t2;
280    p >>= 32;
281    *(u64 *)(ahi) = p + t;
282
283#undef a0
284#undef a1
285#undef a2
286#undef a3
287#undef k0
288#undef k1
289#undef k2
290#undef k3
291}
292
293#define poly_step(ah, al, kh, kl, mh, ml) \
294    poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
295
296#endif /* end of specialized NH and poly definitions */
297
298/* At least nh_16 is defined. Defined others as needed here */
299#ifndef nh_16_2
300#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
301    do { \
302        nh_16(mp, kp, nw, rh, rl); \
303        nh_16(mp, ((kp)+2), nw, rh2, rl2); \
304    } while (0)
305#endif
306#ifndef nh_vmac_nhbytes
307#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
308    nh_16(mp, kp, nw, rh, rl)
309#endif
310#ifndef nh_vmac_nhbytes_2
311#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
312    do { \
313        nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
314        nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
315    } while (0)
316#endif
317
318static void vhash_abort(struct vmac_ctx *ctx)
319{
320    ctx->polytmp[0] = ctx->polykey[0] ;
321    ctx->polytmp[1] = ctx->polykey[1] ;
322    ctx->first_block_processed = 0;
323}
324
325static u64 l3hash(u64 p1, u64 p2,
326            u64 k1, u64 k2, u64 len)
327{
328    u64 rh, rl, t, z = 0;
329
330    /* fully reduce (p1,p2)+(len,0) mod p127 */
331    t = p1 >> 63;
332    p1 &= m63;
333    ADD128(p1, p2, len, t);
334    /* At this point, (p1,p2) is at most 2^127+(len<<64) */
335    t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
336    ADD128(p1, p2, z, t);
337    p1 &= m63;
338
339    /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
340    t = p1 + (p2 >> 32);
341    t += (t >> 32);
342    t += (u32)t > 0xfffffffeu;
343    p1 += (t >> 32);
344    p2 += (p1 << 32);
345
346    /* compute (p1+k1)%p64 and (p2+k2)%p64 */
347    p1 += k1;
348    p1 += (0 - (p1 < k1)) & 257;
349    p2 += k2;
350    p2 += (0 - (p2 < k2)) & 257;
351
352    /* compute (p1+k1)*(p2+k2)%p64 */
353    MUL64(rh, rl, p1, p2);
354    t = rh >> 56;
355    ADD128(t, rl, z, rh);
356    rh <<= 8;
357    ADD128(t, rl, z, rh);
358    t += t << 8;
359    rl += t;
360    rl += (0 - (rl < t)) & 257;
361    rl += (0 - (rl > p64-1)) & 257;
362    return rl;
363}
364
365static void vhash_update(const unsigned char *m,
366            unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
367            struct vmac_ctx *ctx)
368{
369    u64 rh, rl, *mptr;
370    const u64 *kptr = (u64 *)ctx->nhkey;
371    int i;
372    u64 ch, cl;
373    u64 pkh = ctx->polykey[0];
374    u64 pkl = ctx->polykey[1];
375
376    mptr = (u64 *)m;
377    i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
378
379    ch = ctx->polytmp[0];
380    cl = ctx->polytmp[1];
381
382    if (!ctx->first_block_processed) {
383        ctx->first_block_processed = 1;
384        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
385        rh &= m62;
386        ADD128(ch, cl, rh, rl);
387        mptr += (VMAC_NHBYTES/sizeof(u64));
388        i--;
389    }
390
391    while (i--) {
392        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
393        rh &= m62;
394        poly_step(ch, cl, pkh, pkl, rh, rl);
395        mptr += (VMAC_NHBYTES/sizeof(u64));
396    }
397
398    ctx->polytmp[0] = ch;
399    ctx->polytmp[1] = cl;
400}
401
402static u64 vhash(unsigned char m[], unsigned int mbytes,
403            u64 *tagl, struct vmac_ctx *ctx)
404{
405    u64 rh, rl, *mptr;
406    const u64 *kptr = (u64 *)ctx->nhkey;
407    int i, remaining;
408    u64 ch, cl;
409    u64 pkh = ctx->polykey[0];
410    u64 pkl = ctx->polykey[1];
411
412    mptr = (u64 *)m;
413    i = mbytes / VMAC_NHBYTES;
414    remaining = mbytes % VMAC_NHBYTES;
415
416    if (ctx->first_block_processed) {
417        ch = ctx->polytmp[0];
418        cl = ctx->polytmp[1];
419    } else if (i) {
420        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
421        ch &= m62;
422        ADD128(ch, cl, pkh, pkl);
423        mptr += (VMAC_NHBYTES/sizeof(u64));
424        i--;
425    } else if (remaining) {
426        nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
427        ch &= m62;
428        ADD128(ch, cl, pkh, pkl);
429        mptr += (VMAC_NHBYTES/sizeof(u64));
430        goto do_l3;
431    } else {/* Empty String */
432        ch = pkh; cl = pkl;
433        goto do_l3;
434    }
435
436    while (i--) {
437        nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
438        rh &= m62;
439        poly_step(ch, cl, pkh, pkl, rh, rl);
440        mptr += (VMAC_NHBYTES/sizeof(u64));
441    }
442    if (remaining) {
443        nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
444        rh &= m62;
445        poly_step(ch, cl, pkh, pkl, rh, rl);
446    }
447
448do_l3:
449    vhash_abort(ctx);
450    remaining *= 8;
451    return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
452}
453
454static u64 vmac(unsigned char m[], unsigned int mbytes,
455            unsigned char n[16], u64 *tagl,
456            struct vmac_ctx_t *ctx)
457{
458    u64 *in_n, *out_p;
459    u64 p, h;
460    int i;
461
462    in_n = ctx->__vmac_ctx.cached_nonce;
463    out_p = ctx->__vmac_ctx.cached_aes;
464
465    i = n[15] & 1;
466    if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
467        in_n[0] = *(u64 *)(n);
468        in_n[1] = *(u64 *)(n+8);
469        ((unsigned char *)in_n)[15] &= 0xFE;
470        crypto_cipher_encrypt_one(ctx->child,
471            (unsigned char *)out_p, (unsigned char *)in_n);
472
473        ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
474    }
475    p = be64_to_cpup(out_p + i);
476    h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
477    return p + h;
478}
479
480static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
481{
482    u64 in[2] = {0}, out[2];
483    unsigned i;
484    int err = 0;
485
486    err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
487    if (err)
488        return err;
489
490    /* Fill nh key */
491    ((unsigned char *)in)[0] = 0x80;
492    for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
493        crypto_cipher_encrypt_one(ctx->child,
494            (unsigned char *)out, (unsigned char *)in);
495        ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
496        ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
497        ((unsigned char *)in)[15] += 1;
498    }
499
500    /* Fill poly key */
501    ((unsigned char *)in)[0] = 0xC0;
502    in[1] = 0;
503    for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
504        crypto_cipher_encrypt_one(ctx->child,
505            (unsigned char *)out, (unsigned char *)in);
506        ctx->__vmac_ctx.polytmp[i] =
507            ctx->__vmac_ctx.polykey[i] =
508                be64_to_cpup(out) & mpoly;
509        ctx->__vmac_ctx.polytmp[i+1] =
510            ctx->__vmac_ctx.polykey[i+1] =
511                be64_to_cpup(out+1) & mpoly;
512        ((unsigned char *)in)[15] += 1;
513    }
514
515    /* Fill ip key */
516    ((unsigned char *)in)[0] = 0xE0;
517    in[1] = 0;
518    for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
519        do {
520            crypto_cipher_encrypt_one(ctx->child,
521                (unsigned char *)out, (unsigned char *)in);
522            ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
523            ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
524            ((unsigned char *)in)[15] += 1;
525        } while (ctx->__vmac_ctx.l3key[i] >= p64
526            || ctx->__vmac_ctx.l3key[i+1] >= p64);
527    }
528
529    /* Invalidate nonce/aes cache and reset other elements */
530    ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
531    ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
532    ctx->__vmac_ctx.first_block_processed = 0;
533
534    return err;
535}
536
537static int vmac_setkey(struct crypto_shash *parent,
538        const u8 *key, unsigned int keylen)
539{
540    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
541
542    if (keylen != VMAC_KEY_LEN) {
543        crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
544        return -EINVAL;
545    }
546
547    return vmac_set_key((u8 *)key, ctx);
548}
549
550static int vmac_init(struct shash_desc *pdesc)
551{
552    struct crypto_shash *parent = pdesc->tfm;
553    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
554
555    memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
556    return 0;
557}
558
559static int vmac_update(struct shash_desc *pdesc, const u8 *p,
560        unsigned int len)
561{
562    struct crypto_shash *parent = pdesc->tfm;
563    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
564
565    vhash_update(p, len, &ctx->__vmac_ctx);
566
567    return 0;
568}
569
570static int vmac_final(struct shash_desc *pdesc, u8 *out)
571{
572    struct crypto_shash *parent = pdesc->tfm;
573    struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
574    vmac_t mac;
575    u8 nonce[16] = {};
576
577    mac = vmac(NULL, 0, nonce, NULL, ctx);
578    memcpy(out, &mac, sizeof(vmac_t));
579    memset(&mac, 0, sizeof(vmac_t));
580    memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
581    return 0;
582}
583
584static int vmac_init_tfm(struct crypto_tfm *tfm)
585{
586    struct crypto_cipher *cipher;
587    struct crypto_instance *inst = (void *)tfm->__crt_alg;
588    struct crypto_spawn *spawn = crypto_instance_ctx(inst);
589    struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
590
591    cipher = crypto_spawn_cipher(spawn);
592    if (IS_ERR(cipher))
593        return PTR_ERR(cipher);
594
595    ctx->child = cipher;
596    return 0;
597}
598
599static void vmac_exit_tfm(struct crypto_tfm *tfm)
600{
601    struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
602    crypto_free_cipher(ctx->child);
603}
604
605static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
606{
607    struct shash_instance *inst;
608    struct crypto_alg *alg;
609    int err;
610
611    err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
612    if (err)
613        return err;
614
615    alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
616            CRYPTO_ALG_TYPE_MASK);
617    if (IS_ERR(alg))
618        return PTR_ERR(alg);
619
620    inst = shash_alloc_instance("vmac", alg);
621    err = PTR_ERR(inst);
622    if (IS_ERR(inst))
623        goto out_put_alg;
624
625    err = crypto_init_spawn(shash_instance_ctx(inst), alg,
626            shash_crypto_instance(inst),
627            CRYPTO_ALG_TYPE_MASK);
628    if (err)
629        goto out_free_inst;
630
631    inst->alg.base.cra_priority = alg->cra_priority;
632    inst->alg.base.cra_blocksize = alg->cra_blocksize;
633    inst->alg.base.cra_alignmask = alg->cra_alignmask;
634
635    inst->alg.digestsize = sizeof(vmac_t);
636    inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
637    inst->alg.base.cra_init = vmac_init_tfm;
638    inst->alg.base.cra_exit = vmac_exit_tfm;
639
640    inst->alg.init = vmac_init;
641    inst->alg.update = vmac_update;
642    inst->alg.final = vmac_final;
643    inst->alg.setkey = vmac_setkey;
644
645    err = shash_register_instance(tmpl, inst);
646    if (err) {
647out_free_inst:
648        shash_free_instance(shash_crypto_instance(inst));
649    }
650
651out_put_alg:
652    crypto_mod_put(alg);
653    return err;
654}
655
656static struct crypto_template vmac_tmpl = {
657    .name = "vmac",
658    .create = vmac_create,
659    .free = shash_free_instance,
660    .module = THIS_MODULE,
661};
662
663static int __init vmac_module_init(void)
664{
665    return crypto_register_template(&vmac_tmpl);
666}
667
668static void __exit vmac_module_exit(void)
669{
670    crypto_unregister_template(&vmac_tmpl);
671}
672
673module_init(vmac_module_init);
674module_exit(vmac_module_exit);
675
676MODULE_LICENSE("GPL");
677MODULE_DESCRIPTION("VMAC hash algorithm");
678
679

Archive Download this file



interactive