Root/security/security.c

1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/ima.h>
20
21/* Boot-time LSM user choice */
22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23    CONFIG_DEFAULT_SECURITY;
24
25/* things that live in capability.c */
26extern void security_fixup_ops(struct security_operations *ops);
27
28static struct security_operations *security_ops;
29static struct security_operations default_security_ops = {
30    .name = "default",
31};
32
33static inline int verify(struct security_operations *ops)
34{
35    /* verify the security_operations structure exists */
36    if (!ops)
37        return -EINVAL;
38    security_fixup_ops(ops);
39    return 0;
40}
41
42static void __init do_security_initcalls(void)
43{
44    initcall_t *call;
45    call = __security_initcall_start;
46    while (call < __security_initcall_end) {
47        (*call) ();
48        call++;
49    }
50}
51
52/**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57int __init security_init(void)
58{
59    printk(KERN_INFO "Security Framework initialized\n");
60
61    security_fixup_ops(&default_security_ops);
62    security_ops = &default_security_ops;
63    do_security_initcalls();
64
65    return 0;
66}
67
68void reset_security_ops(void)
69{
70    security_ops = &default_security_ops;
71}
72
73/* Save user chosen LSM */
74static int __init choose_lsm(char *str)
75{
76    strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77    return 1;
78}
79__setup("security=", choose_lsm);
80
81/**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time,
93 * -or there is no default LSM set and the user didn't specify a
94 * specific LSM and we're the first to ask for registration permission,
95 * -or the passed LSM is currently loaded.
96 * Otherwise, return false.
97 */
98int __init security_module_enable(struct security_operations *ops)
99{
100    if (!*chosen_lsm)
101        strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102    else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103        return 0;
104
105    return 1;
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120int register_security(struct security_operations *ops)
121{
122    if (verify(ops)) {
123        printk(KERN_DEBUG "%s could not verify "
124               "security_operations structure.\n", __func__);
125        return -EINVAL;
126    }
127
128    if (security_ops != &default_security_ops)
129        return -EAGAIN;
130
131    security_ops = ops;
132
133    return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140    return security_ops->ptrace_access_check(child, mode);
141}
142
143int security_ptrace_traceme(struct task_struct *parent)
144{
145    return security_ops->ptrace_traceme(parent);
146}
147
148int security_capget(struct task_struct *target,
149             kernel_cap_t *effective,
150             kernel_cap_t *inheritable,
151             kernel_cap_t *permitted)
152{
153    return security_ops->capget(target, effective, inheritable, permitted);
154}
155
156int security_capset(struct cred *new, const struct cred *old,
157            const kernel_cap_t *effective,
158            const kernel_cap_t *inheritable,
159            const kernel_cap_t *permitted)
160{
161    return security_ops->capset(new, old,
162                    effective, inheritable, permitted);
163}
164
165int security_capable(int cap)
166{
167    return security_ops->capable(current, current_cred(), cap,
168                     SECURITY_CAP_AUDIT);
169}
170
171int security_real_capable(struct task_struct *tsk, int cap)
172{
173    const struct cred *cred;
174    int ret;
175
176    cred = get_task_cred(tsk);
177    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178    put_cred(cred);
179    return ret;
180}
181
182int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183{
184    const struct cred *cred;
185    int ret;
186
187    cred = get_task_cred(tsk);
188    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189    put_cred(cred);
190    return ret;
191}
192
193int security_acct(struct file *file)
194{
195    return security_ops->acct(file);
196}
197
198int security_sysctl(struct ctl_table *table, int op)
199{
200    return security_ops->sysctl(table, op);
201}
202
203int security_quotactl(int cmds, int type, int id, struct super_block *sb)
204{
205    return security_ops->quotactl(cmds, type, id, sb);
206}
207
208int security_quota_on(struct dentry *dentry)
209{
210    return security_ops->quota_on(dentry);
211}
212
213int security_syslog(int type, bool from_file)
214{
215    return security_ops->syslog(type, from_file);
216}
217
218int security_settime(struct timespec *ts, struct timezone *tz)
219{
220    return security_ops->settime(ts, tz);
221}
222
223int security_vm_enough_memory(long pages)
224{
225    WARN_ON(current->mm == NULL);
226    return security_ops->vm_enough_memory(current->mm, pages);
227}
228
229int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230{
231    WARN_ON(mm == NULL);
232    return security_ops->vm_enough_memory(mm, pages);
233}
234
235int security_vm_enough_memory_kern(long pages)
236{
237    /* If current->mm is a kernel thread then we will pass NULL,
238       for this specific case that is fine */
239    return security_ops->vm_enough_memory(current->mm, pages);
240}
241
242int security_bprm_set_creds(struct linux_binprm *bprm)
243{
244    return security_ops->bprm_set_creds(bprm);
245}
246
247int security_bprm_check(struct linux_binprm *bprm)
248{
249    int ret;
250
251    ret = security_ops->bprm_check_security(bprm);
252    if (ret)
253        return ret;
254    return ima_bprm_check(bprm);
255}
256
257void security_bprm_committing_creds(struct linux_binprm *bprm)
258{
259    security_ops->bprm_committing_creds(bprm);
260}
261
262void security_bprm_committed_creds(struct linux_binprm *bprm)
263{
264    security_ops->bprm_committed_creds(bprm);
265}
266
267int security_bprm_secureexec(struct linux_binprm *bprm)
268{
269    return security_ops->bprm_secureexec(bprm);
270}
271
272int security_sb_alloc(struct super_block *sb)
273{
274    return security_ops->sb_alloc_security(sb);
275}
276
277void security_sb_free(struct super_block *sb)
278{
279    security_ops->sb_free_security(sb);
280}
281
282int security_sb_copy_data(char *orig, char *copy)
283{
284    return security_ops->sb_copy_data(orig, copy);
285}
286EXPORT_SYMBOL(security_sb_copy_data);
287
288int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289{
290    return security_ops->sb_kern_mount(sb, flags, data);
291}
292
293int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294{
295    return security_ops->sb_show_options(m, sb);
296}
297
298int security_sb_statfs(struct dentry *dentry)
299{
300    return security_ops->sb_statfs(dentry);
301}
302
303int security_sb_mount(char *dev_name, struct path *path,
304                       char *type, unsigned long flags, void *data)
305{
306    return security_ops->sb_mount(dev_name, path, type, flags, data);
307}
308
309int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
310{
311    return security_ops->sb_check_sb(mnt, path);
312}
313
314int security_sb_umount(struct vfsmount *mnt, int flags)
315{
316    return security_ops->sb_umount(mnt, flags);
317}
318
319void security_sb_umount_close(struct vfsmount *mnt)
320{
321    security_ops->sb_umount_close(mnt);
322}
323
324void security_sb_umount_busy(struct vfsmount *mnt)
325{
326    security_ops->sb_umount_busy(mnt);
327}
328
329void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
330{
331    security_ops->sb_post_remount(mnt, flags, data);
332}
333
334void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
335{
336    security_ops->sb_post_addmount(mnt, mountpoint);
337}
338
339int security_sb_pivotroot(struct path *old_path, struct path *new_path)
340{
341    return security_ops->sb_pivotroot(old_path, new_path);
342}
343
344void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
345{
346    security_ops->sb_post_pivotroot(old_path, new_path);
347}
348
349int security_sb_set_mnt_opts(struct super_block *sb,
350                struct security_mnt_opts *opts)
351{
352    return security_ops->sb_set_mnt_opts(sb, opts);
353}
354EXPORT_SYMBOL(security_sb_set_mnt_opts);
355
356void security_sb_clone_mnt_opts(const struct super_block *oldsb,
357                struct super_block *newsb)
358{
359    security_ops->sb_clone_mnt_opts(oldsb, newsb);
360}
361EXPORT_SYMBOL(security_sb_clone_mnt_opts);
362
363int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
364{
365    return security_ops->sb_parse_opts_str(options, opts);
366}
367EXPORT_SYMBOL(security_sb_parse_opts_str);
368
369int security_inode_alloc(struct inode *inode)
370{
371    int ret;
372
373    inode->i_security = NULL;
374    ret = security_ops->inode_alloc_security(inode);
375    if (ret)
376        return ret;
377    ret = ima_inode_alloc(inode);
378    if (ret)
379        security_inode_free(inode);
380    return ret;
381}
382
383void security_inode_free(struct inode *inode)
384{
385    ima_inode_free(inode);
386    security_ops->inode_free_security(inode);
387}
388
389int security_inode_init_security(struct inode *inode, struct inode *dir,
390                  char **name, void **value, size_t *len)
391{
392    if (unlikely(IS_PRIVATE(inode)))
393        return -EOPNOTSUPP;
394    return security_ops->inode_init_security(inode, dir, name, value, len);
395}
396EXPORT_SYMBOL(security_inode_init_security);
397
398#ifdef CONFIG_SECURITY_PATH
399int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
400            unsigned int dev)
401{
402    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403        return 0;
404    return security_ops->path_mknod(dir, dentry, mode, dev);
405}
406EXPORT_SYMBOL(security_path_mknod);
407
408int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
409{
410    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
411        return 0;
412    return security_ops->path_mkdir(dir, dentry, mode);
413}
414
415int security_path_rmdir(struct path *dir, struct dentry *dentry)
416{
417    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
418        return 0;
419    return security_ops->path_rmdir(dir, dentry);
420}
421
422int security_path_unlink(struct path *dir, struct dentry *dentry)
423{
424    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425        return 0;
426    return security_ops->path_unlink(dir, dentry);
427}
428
429int security_path_symlink(struct path *dir, struct dentry *dentry,
430              const char *old_name)
431{
432    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
433        return 0;
434    return security_ops->path_symlink(dir, dentry, old_name);
435}
436
437int security_path_link(struct dentry *old_dentry, struct path *new_dir,
438               struct dentry *new_dentry)
439{
440    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
441        return 0;
442    return security_ops->path_link(old_dentry, new_dir, new_dentry);
443}
444
445int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
446             struct path *new_dir, struct dentry *new_dentry)
447{
448    if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
449             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
450        return 0;
451    return security_ops->path_rename(old_dir, old_dentry, new_dir,
452                     new_dentry);
453}
454
455int security_path_truncate(struct path *path, loff_t length,
456               unsigned int time_attrs)
457{
458    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
459        return 0;
460    return security_ops->path_truncate(path, length, time_attrs);
461}
462
463int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
464            mode_t mode)
465{
466    if (unlikely(IS_PRIVATE(dentry->d_inode)))
467        return 0;
468    return security_ops->path_chmod(dentry, mnt, mode);
469}
470
471int security_path_chown(struct path *path, uid_t uid, gid_t gid)
472{
473    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
474        return 0;
475    return security_ops->path_chown(path, uid, gid);
476}
477
478int security_path_chroot(struct path *path)
479{
480    return security_ops->path_chroot(path);
481}
482#endif
483
484int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
485{
486    if (unlikely(IS_PRIVATE(dir)))
487        return 0;
488    return security_ops->inode_create(dir, dentry, mode);
489}
490EXPORT_SYMBOL_GPL(security_inode_create);
491
492int security_inode_link(struct dentry *old_dentry, struct inode *dir,
493             struct dentry *new_dentry)
494{
495    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
496        return 0;
497    return security_ops->inode_link(old_dentry, dir, new_dentry);
498}
499
500int security_inode_unlink(struct inode *dir, struct dentry *dentry)
501{
502    if (unlikely(IS_PRIVATE(dentry->d_inode)))
503        return 0;
504    return security_ops->inode_unlink(dir, dentry);
505}
506
507int security_inode_symlink(struct inode *dir, struct dentry *dentry,
508                const char *old_name)
509{
510    if (unlikely(IS_PRIVATE(dir)))
511        return 0;
512    return security_ops->inode_symlink(dir, dentry, old_name);
513}
514
515int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
516{
517    if (unlikely(IS_PRIVATE(dir)))
518        return 0;
519    return security_ops->inode_mkdir(dir, dentry, mode);
520}
521EXPORT_SYMBOL_GPL(security_inode_mkdir);
522
523int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
524{
525    if (unlikely(IS_PRIVATE(dentry->d_inode)))
526        return 0;
527    return security_ops->inode_rmdir(dir, dentry);
528}
529
530int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
531{
532    if (unlikely(IS_PRIVATE(dir)))
533        return 0;
534    return security_ops->inode_mknod(dir, dentry, mode, dev);
535}
536
537int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
538               struct inode *new_dir, struct dentry *new_dentry)
539{
540        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
541            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
542        return 0;
543    return security_ops->inode_rename(old_dir, old_dentry,
544                       new_dir, new_dentry);
545}
546
547int security_inode_readlink(struct dentry *dentry)
548{
549    if (unlikely(IS_PRIVATE(dentry->d_inode)))
550        return 0;
551    return security_ops->inode_readlink(dentry);
552}
553
554int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
555{
556    if (unlikely(IS_PRIVATE(dentry->d_inode)))
557        return 0;
558    return security_ops->inode_follow_link(dentry, nd);
559}
560
561int security_inode_permission(struct inode *inode, int mask)
562{
563    if (unlikely(IS_PRIVATE(inode)))
564        return 0;
565    return security_ops->inode_permission(inode, mask);
566}
567
568int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
569{
570    if (unlikely(IS_PRIVATE(dentry->d_inode)))
571        return 0;
572    return security_ops->inode_setattr(dentry, attr);
573}
574EXPORT_SYMBOL_GPL(security_inode_setattr);
575
576int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
577{
578    if (unlikely(IS_PRIVATE(dentry->d_inode)))
579        return 0;
580    return security_ops->inode_getattr(mnt, dentry);
581}
582
583void security_inode_delete(struct inode *inode)
584{
585    if (unlikely(IS_PRIVATE(inode)))
586        return;
587    security_ops->inode_delete(inode);
588}
589
590int security_inode_setxattr(struct dentry *dentry, const char *name,
591                const void *value, size_t size, int flags)
592{
593    if (unlikely(IS_PRIVATE(dentry->d_inode)))
594        return 0;
595    return security_ops->inode_setxattr(dentry, name, value, size, flags);
596}
597
598void security_inode_post_setxattr(struct dentry *dentry, const char *name,
599                  const void *value, size_t size, int flags)
600{
601    if (unlikely(IS_PRIVATE(dentry->d_inode)))
602        return;
603    security_ops->inode_post_setxattr(dentry, name, value, size, flags);
604}
605
606int security_inode_getxattr(struct dentry *dentry, const char *name)
607{
608    if (unlikely(IS_PRIVATE(dentry->d_inode)))
609        return 0;
610    return security_ops->inode_getxattr(dentry, name);
611}
612
613int security_inode_listxattr(struct dentry *dentry)
614{
615    if (unlikely(IS_PRIVATE(dentry->d_inode)))
616        return 0;
617    return security_ops->inode_listxattr(dentry);
618}
619
620int security_inode_removexattr(struct dentry *dentry, const char *name)
621{
622    if (unlikely(IS_PRIVATE(dentry->d_inode)))
623        return 0;
624    return security_ops->inode_removexattr(dentry, name);
625}
626
627int security_inode_need_killpriv(struct dentry *dentry)
628{
629    return security_ops->inode_need_killpriv(dentry);
630}
631
632int security_inode_killpriv(struct dentry *dentry)
633{
634    return security_ops->inode_killpriv(dentry);
635}
636
637int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
638{
639    if (unlikely(IS_PRIVATE(inode)))
640        return -EOPNOTSUPP;
641    return security_ops->inode_getsecurity(inode, name, buffer, alloc);
642}
643
644int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
645{
646    if (unlikely(IS_PRIVATE(inode)))
647        return -EOPNOTSUPP;
648    return security_ops->inode_setsecurity(inode, name, value, size, flags);
649}
650
651int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
652{
653    if (unlikely(IS_PRIVATE(inode)))
654        return 0;
655    return security_ops->inode_listsecurity(inode, buffer, buffer_size);
656}
657
658void security_inode_getsecid(const struct inode *inode, u32 *secid)
659{
660    security_ops->inode_getsecid(inode, secid);
661}
662
663int security_file_permission(struct file *file, int mask)
664{
665    return security_ops->file_permission(file, mask);
666}
667
668int security_file_alloc(struct file *file)
669{
670    return security_ops->file_alloc_security(file);
671}
672
673void security_file_free(struct file *file)
674{
675    security_ops->file_free_security(file);
676}
677
678int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
679{
680    return security_ops->file_ioctl(file, cmd, arg);
681}
682
683int security_file_mmap(struct file *file, unsigned long reqprot,
684            unsigned long prot, unsigned long flags,
685            unsigned long addr, unsigned long addr_only)
686{
687    int ret;
688
689    ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
690    if (ret)
691        return ret;
692    return ima_file_mmap(file, prot);
693}
694
695int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
696                unsigned long prot)
697{
698    return security_ops->file_mprotect(vma, reqprot, prot);
699}
700
701int security_file_lock(struct file *file, unsigned int cmd)
702{
703    return security_ops->file_lock(file, cmd);
704}
705
706int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
707{
708    return security_ops->file_fcntl(file, cmd, arg);
709}
710
711int security_file_set_fowner(struct file *file)
712{
713    return security_ops->file_set_fowner(file);
714}
715
716int security_file_send_sigiotask(struct task_struct *tsk,
717                  struct fown_struct *fown, int sig)
718{
719    return security_ops->file_send_sigiotask(tsk, fown, sig);
720}
721
722int security_file_receive(struct file *file)
723{
724    return security_ops->file_receive(file);
725}
726
727int security_dentry_open(struct file *file, const struct cred *cred)
728{
729    return security_ops->dentry_open(file, cred);
730}
731
732int security_task_create(unsigned long clone_flags)
733{
734    return security_ops->task_create(clone_flags);
735}
736
737int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
738{
739    return security_ops->cred_alloc_blank(cred, gfp);
740}
741
742void security_cred_free(struct cred *cred)
743{
744    security_ops->cred_free(cred);
745}
746
747int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
748{
749    return security_ops->cred_prepare(new, old, gfp);
750}
751
752void security_commit_creds(struct cred *new, const struct cred *old)
753{
754    security_ops->cred_commit(new, old);
755}
756
757void security_transfer_creds(struct cred *new, const struct cred *old)
758{
759    security_ops->cred_transfer(new, old);
760}
761
762int security_kernel_act_as(struct cred *new, u32 secid)
763{
764    return security_ops->kernel_act_as(new, secid);
765}
766
767int security_kernel_create_files_as(struct cred *new, struct inode *inode)
768{
769    return security_ops->kernel_create_files_as(new, inode);
770}
771
772int security_kernel_module_request(char *kmod_name)
773{
774    return security_ops->kernel_module_request(kmod_name);
775}
776
777int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
778{
779    return security_ops->task_setuid(id0, id1, id2, flags);
780}
781
782int security_task_fix_setuid(struct cred *new, const struct cred *old,
783                 int flags)
784{
785    return security_ops->task_fix_setuid(new, old, flags);
786}
787
788int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
789{
790    return security_ops->task_setgid(id0, id1, id2, flags);
791}
792
793int security_task_setpgid(struct task_struct *p, pid_t pgid)
794{
795    return security_ops->task_setpgid(p, pgid);
796}
797
798int security_task_getpgid(struct task_struct *p)
799{
800    return security_ops->task_getpgid(p);
801}
802
803int security_task_getsid(struct task_struct *p)
804{
805    return security_ops->task_getsid(p);
806}
807
808void security_task_getsecid(struct task_struct *p, u32 *secid)
809{
810    security_ops->task_getsecid(p, secid);
811}
812EXPORT_SYMBOL(security_task_getsecid);
813
814int security_task_setgroups(struct group_info *group_info)
815{
816    return security_ops->task_setgroups(group_info);
817}
818
819int security_task_setnice(struct task_struct *p, int nice)
820{
821    return security_ops->task_setnice(p, nice);
822}
823
824int security_task_setioprio(struct task_struct *p, int ioprio)
825{
826    return security_ops->task_setioprio(p, ioprio);
827}
828
829int security_task_getioprio(struct task_struct *p)
830{
831    return security_ops->task_getioprio(p);
832}
833
834int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
835{
836    return security_ops->task_setrlimit(resource, new_rlim);
837}
838
839int security_task_setscheduler(struct task_struct *p,
840                int policy, struct sched_param *lp)
841{
842    return security_ops->task_setscheduler(p, policy, lp);
843}
844
845int security_task_getscheduler(struct task_struct *p)
846{
847    return security_ops->task_getscheduler(p);
848}
849
850int security_task_movememory(struct task_struct *p)
851{
852    return security_ops->task_movememory(p);
853}
854
855int security_task_kill(struct task_struct *p, struct siginfo *info,
856            int sig, u32 secid)
857{
858    return security_ops->task_kill(p, info, sig, secid);
859}
860
861int security_task_wait(struct task_struct *p)
862{
863    return security_ops->task_wait(p);
864}
865
866int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
867             unsigned long arg4, unsigned long arg5)
868{
869    return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
870}
871
872void security_task_to_inode(struct task_struct *p, struct inode *inode)
873{
874    security_ops->task_to_inode(p, inode);
875}
876
877int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
878{
879    return security_ops->ipc_permission(ipcp, flag);
880}
881
882void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
883{
884    security_ops->ipc_getsecid(ipcp, secid);
885}
886
887int security_msg_msg_alloc(struct msg_msg *msg)
888{
889    return security_ops->msg_msg_alloc_security(msg);
890}
891
892void security_msg_msg_free(struct msg_msg *msg)
893{
894    security_ops->msg_msg_free_security(msg);
895}
896
897int security_msg_queue_alloc(struct msg_queue *msq)
898{
899    return security_ops->msg_queue_alloc_security(msq);
900}
901
902void security_msg_queue_free(struct msg_queue *msq)
903{
904    security_ops->msg_queue_free_security(msq);
905}
906
907int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
908{
909    return security_ops->msg_queue_associate(msq, msqflg);
910}
911
912int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
913{
914    return security_ops->msg_queue_msgctl(msq, cmd);
915}
916
917int security_msg_queue_msgsnd(struct msg_queue *msq,
918                   struct msg_msg *msg, int msqflg)
919{
920    return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
921}
922
923int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
924                   struct task_struct *target, long type, int mode)
925{
926    return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
927}
928
929int security_shm_alloc(struct shmid_kernel *shp)
930{
931    return security_ops->shm_alloc_security(shp);
932}
933
934void security_shm_free(struct shmid_kernel *shp)
935{
936    security_ops->shm_free_security(shp);
937}
938
939int security_shm_associate(struct shmid_kernel *shp, int shmflg)
940{
941    return security_ops->shm_associate(shp, shmflg);
942}
943
944int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
945{
946    return security_ops->shm_shmctl(shp, cmd);
947}
948
949int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
950{
951    return security_ops->shm_shmat(shp, shmaddr, shmflg);
952}
953
954int security_sem_alloc(struct sem_array *sma)
955{
956    return security_ops->sem_alloc_security(sma);
957}
958
959void security_sem_free(struct sem_array *sma)
960{
961    security_ops->sem_free_security(sma);
962}
963
964int security_sem_associate(struct sem_array *sma, int semflg)
965{
966    return security_ops->sem_associate(sma, semflg);
967}
968
969int security_sem_semctl(struct sem_array *sma, int cmd)
970{
971    return security_ops->sem_semctl(sma, cmd);
972}
973
974int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
975            unsigned nsops, int alter)
976{
977    return security_ops->sem_semop(sma, sops, nsops, alter);
978}
979
980void security_d_instantiate(struct dentry *dentry, struct inode *inode)
981{
982    if (unlikely(inode && IS_PRIVATE(inode)))
983        return;
984    security_ops->d_instantiate(dentry, inode);
985}
986EXPORT_SYMBOL(security_d_instantiate);
987
988int security_getprocattr(struct task_struct *p, char *name, char **value)
989{
990    return security_ops->getprocattr(p, name, value);
991}
992
993int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
994{
995    return security_ops->setprocattr(p, name, value, size);
996}
997
998int security_netlink_send(struct sock *sk, struct sk_buff *skb)
999{
1000    return security_ops->netlink_send(sk, skb);
1001}
1002
1003int security_netlink_recv(struct sk_buff *skb, int cap)
1004{
1005    return security_ops->netlink_recv(skb, cap);
1006}
1007EXPORT_SYMBOL(security_netlink_recv);
1008
1009int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1010{
1011    return security_ops->secid_to_secctx(secid, secdata, seclen);
1012}
1013EXPORT_SYMBOL(security_secid_to_secctx);
1014
1015int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1016{
1017    return security_ops->secctx_to_secid(secdata, seclen, secid);
1018}
1019EXPORT_SYMBOL(security_secctx_to_secid);
1020
1021void security_release_secctx(char *secdata, u32 seclen)
1022{
1023    security_ops->release_secctx(secdata, seclen);
1024}
1025EXPORT_SYMBOL(security_release_secctx);
1026
1027int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1028{
1029    return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1030}
1031EXPORT_SYMBOL(security_inode_notifysecctx);
1032
1033int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1034{
1035    return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1036}
1037EXPORT_SYMBOL(security_inode_setsecctx);
1038
1039int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1040{
1041    return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1042}
1043EXPORT_SYMBOL(security_inode_getsecctx);
1044
1045#ifdef CONFIG_SECURITY_NETWORK
1046
1047int security_unix_stream_connect(struct socket *sock, struct socket *other,
1048                 struct sock *newsk)
1049{
1050    return security_ops->unix_stream_connect(sock, other, newsk);
1051}
1052EXPORT_SYMBOL(security_unix_stream_connect);
1053
1054int security_unix_may_send(struct socket *sock, struct socket *other)
1055{
1056    return security_ops->unix_may_send(sock, other);
1057}
1058EXPORT_SYMBOL(security_unix_may_send);
1059
1060int security_socket_create(int family, int type, int protocol, int kern)
1061{
1062    return security_ops->socket_create(family, type, protocol, kern);
1063}
1064
1065int security_socket_post_create(struct socket *sock, int family,
1066                int type, int protocol, int kern)
1067{
1068    return security_ops->socket_post_create(sock, family, type,
1069                        protocol, kern);
1070}
1071
1072int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1073{
1074    return security_ops->socket_bind(sock, address, addrlen);
1075}
1076
1077int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1078{
1079    return security_ops->socket_connect(sock, address, addrlen);
1080}
1081
1082int security_socket_listen(struct socket *sock, int backlog)
1083{
1084    return security_ops->socket_listen(sock, backlog);
1085}
1086
1087int security_socket_accept(struct socket *sock, struct socket *newsock)
1088{
1089    return security_ops->socket_accept(sock, newsock);
1090}
1091
1092int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1093{
1094    return security_ops->socket_sendmsg(sock, msg, size);
1095}
1096
1097int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1098                int size, int flags)
1099{
1100    return security_ops->socket_recvmsg(sock, msg, size, flags);
1101}
1102
1103int security_socket_getsockname(struct socket *sock)
1104{
1105    return security_ops->socket_getsockname(sock);
1106}
1107
1108int security_socket_getpeername(struct socket *sock)
1109{
1110    return security_ops->socket_getpeername(sock);
1111}
1112
1113int security_socket_getsockopt(struct socket *sock, int level, int optname)
1114{
1115    return security_ops->socket_getsockopt(sock, level, optname);
1116}
1117
1118int security_socket_setsockopt(struct socket *sock, int level, int optname)
1119{
1120    return security_ops->socket_setsockopt(sock, level, optname);
1121}
1122
1123int security_socket_shutdown(struct socket *sock, int how)
1124{
1125    return security_ops->socket_shutdown(sock, how);
1126}
1127
1128int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1129{
1130    return security_ops->socket_sock_rcv_skb(sk, skb);
1131}
1132EXPORT_SYMBOL(security_sock_rcv_skb);
1133
1134int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1135                      int __user *optlen, unsigned len)
1136{
1137    return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1138}
1139
1140int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1141{
1142    return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1143}
1144EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1145
1146int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1147{
1148    return security_ops->sk_alloc_security(sk, family, priority);
1149}
1150
1151void security_sk_free(struct sock *sk)
1152{
1153    security_ops->sk_free_security(sk);
1154}
1155
1156void security_sk_clone(const struct sock *sk, struct sock *newsk)
1157{
1158    security_ops->sk_clone_security(sk, newsk);
1159}
1160
1161void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1162{
1163    security_ops->sk_getsecid(sk, &fl->secid);
1164}
1165EXPORT_SYMBOL(security_sk_classify_flow);
1166
1167void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1168{
1169    security_ops->req_classify_flow(req, fl);
1170}
1171EXPORT_SYMBOL(security_req_classify_flow);
1172
1173void security_sock_graft(struct sock *sk, struct socket *parent)
1174{
1175    security_ops->sock_graft(sk, parent);
1176}
1177EXPORT_SYMBOL(security_sock_graft);
1178
1179int security_inet_conn_request(struct sock *sk,
1180            struct sk_buff *skb, struct request_sock *req)
1181{
1182    return security_ops->inet_conn_request(sk, skb, req);
1183}
1184EXPORT_SYMBOL(security_inet_conn_request);
1185
1186void security_inet_csk_clone(struct sock *newsk,
1187            const struct request_sock *req)
1188{
1189    security_ops->inet_csk_clone(newsk, req);
1190}
1191
1192void security_inet_conn_established(struct sock *sk,
1193            struct sk_buff *skb)
1194{
1195    security_ops->inet_conn_established(sk, skb);
1196}
1197
1198int security_tun_dev_create(void)
1199{
1200    return security_ops->tun_dev_create();
1201}
1202EXPORT_SYMBOL(security_tun_dev_create);
1203
1204void security_tun_dev_post_create(struct sock *sk)
1205{
1206    return security_ops->tun_dev_post_create(sk);
1207}
1208EXPORT_SYMBOL(security_tun_dev_post_create);
1209
1210int security_tun_dev_attach(struct sock *sk)
1211{
1212    return security_ops->tun_dev_attach(sk);
1213}
1214EXPORT_SYMBOL(security_tun_dev_attach);
1215
1216#endif /* CONFIG_SECURITY_NETWORK */
1217
1218#ifdef CONFIG_SECURITY_NETWORK_XFRM
1219
1220int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1221{
1222    return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1223}
1224EXPORT_SYMBOL(security_xfrm_policy_alloc);
1225
1226int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1227                  struct xfrm_sec_ctx **new_ctxp)
1228{
1229    return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1230}
1231
1232void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1233{
1234    security_ops->xfrm_policy_free_security(ctx);
1235}
1236EXPORT_SYMBOL(security_xfrm_policy_free);
1237
1238int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1239{
1240    return security_ops->xfrm_policy_delete_security(ctx);
1241}
1242
1243int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1244{
1245    return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1246}
1247EXPORT_SYMBOL(security_xfrm_state_alloc);
1248
1249int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1250                      struct xfrm_sec_ctx *polsec, u32 secid)
1251{
1252    if (!polsec)
1253        return 0;
1254    /*
1255     * We want the context to be taken from secid which is usually
1256     * from the sock.
1257     */
1258    return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1259}
1260
1261int security_xfrm_state_delete(struct xfrm_state *x)
1262{
1263    return security_ops->xfrm_state_delete_security(x);
1264}
1265EXPORT_SYMBOL(security_xfrm_state_delete);
1266
1267void security_xfrm_state_free(struct xfrm_state *x)
1268{
1269    security_ops->xfrm_state_free_security(x);
1270}
1271
1272int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1273{
1274    return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1275}
1276
1277int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1278                       struct xfrm_policy *xp, struct flowi *fl)
1279{
1280    return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1281}
1282
1283int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1284{
1285    return security_ops->xfrm_decode_session(skb, secid, 1);
1286}
1287
1288void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1289{
1290    int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1291
1292    BUG_ON(rc);
1293}
1294EXPORT_SYMBOL(security_skb_classify_flow);
1295
1296#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1297
1298#ifdef CONFIG_KEYS
1299
1300int security_key_alloc(struct key *key, const struct cred *cred,
1301               unsigned long flags)
1302{
1303    return security_ops->key_alloc(key, cred, flags);
1304}
1305
1306void security_key_free(struct key *key)
1307{
1308    security_ops->key_free(key);
1309}
1310
1311int security_key_permission(key_ref_t key_ref,
1312                const struct cred *cred, key_perm_t perm)
1313{
1314    return security_ops->key_permission(key_ref, cred, perm);
1315}
1316
1317int security_key_getsecurity(struct key *key, char **_buffer)
1318{
1319    return security_ops->key_getsecurity(key, _buffer);
1320}
1321
1322int security_key_session_to_parent(const struct cred *cred,
1323                   const struct cred *parent_cred,
1324                   struct key *key)
1325{
1326    return security_ops->key_session_to_parent(cred, parent_cred, key);
1327}
1328
1329#endif /* CONFIG_KEYS */
1330
1331#ifdef CONFIG_AUDIT
1332
1333int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1334{
1335    return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1336}
1337
1338int security_audit_rule_known(struct audit_krule *krule)
1339{
1340    return security_ops->audit_rule_known(krule);
1341}
1342
1343void security_audit_rule_free(void *lsmrule)
1344{
1345    security_ops->audit_rule_free(lsmrule);
1346}
1347
1348int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1349                  struct audit_context *actx)
1350{
1351    return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1352}
1353
1354#endif /* CONFIG_AUDIT */
1355

Archive Download this file



interactive