Root/tools/perf/builtin-timechart.c

1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/string.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35
36static char const *input_name = "perf.data";
37static char const *output_name = "output.svg";
38
39static unsigned int numcpus;
40static u64 min_freq; /* Lowest CPU frequency seen */
41static u64 max_freq; /* Highest CPU frequency seen */
42static u64 turbo_frequency;
43
44static u64 first_time, last_time;
45
46static int power_only;
47
48
49struct per_pid;
50struct per_pidcomm;
51
52struct cpu_sample;
53struct power_event;
54struct wake_event;
55
56struct sample_wrapper;
57
58/*
59 * Datastructure layout:
60 * We keep an list of "pid"s, matching the kernels notion of a task struct.
61 * Each "pid" entry, has a list of "comm"s.
62 * this is because we want to track different programs different, while
63 * exec will reuse the original pid (by design).
64 * Each comm has a list of samples that will be used to draw
65 * final graph.
66 */
67
68struct per_pid {
69    struct per_pid *next;
70
71    int pid;
72    int ppid;
73
74    u64 start_time;
75    u64 end_time;
76    u64 total_time;
77    int display;
78
79    struct per_pidcomm *all;
80    struct per_pidcomm *current;
81
82    int painted;
83};
84
85
86struct per_pidcomm {
87    struct per_pidcomm *next;
88
89    u64 start_time;
90    u64 end_time;
91    u64 total_time;
92
93    int Y;
94    int display;
95
96    long state;
97    u64 state_since;
98
99    char *comm;
100
101    struct cpu_sample *samples;
102};
103
104struct sample_wrapper {
105    struct sample_wrapper *next;
106
107    u64 timestamp;
108    unsigned char data[0];
109};
110
111#define TYPE_NONE 0
112#define TYPE_RUNNING 1
113#define TYPE_WAITING 2
114#define TYPE_BLOCKED 3
115
116struct cpu_sample {
117    struct cpu_sample *next;
118
119    u64 start_time;
120    u64 end_time;
121    int type;
122    int cpu;
123};
124
125static struct per_pid *all_data;
126
127#define CSTATE 1
128#define PSTATE 2
129
130struct power_event {
131    struct power_event *next;
132    int type;
133    int state;
134    u64 start_time;
135    u64 end_time;
136    int cpu;
137};
138
139struct wake_event {
140    struct wake_event *next;
141    int waker;
142    int wakee;
143    u64 time;
144};
145
146static struct power_event *power_events;
147static struct wake_event *wake_events;
148
149struct sample_wrapper *all_samples;
150
151
152struct process_filter;
153struct process_filter {
154    char *name;
155    int pid;
156    struct process_filter *next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164    struct per_pid *cursor = all_data;
165
166    while (cursor) {
167        if (cursor->pid == pid)
168            return cursor;
169        cursor = cursor->next;
170    }
171    cursor = malloc(sizeof(struct per_pid));
172    assert(cursor != NULL);
173    memset(cursor, 0, sizeof(struct per_pid));
174    cursor->pid = pid;
175    cursor->next = all_data;
176    all_data = cursor;
177    return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182    struct per_pid *p;
183    struct per_pidcomm *c;
184    p = find_create_pid(pid);
185    c = p->all;
186    while (c) {
187        if (c->comm && strcmp(c->comm, comm) == 0) {
188            p->current = c;
189            return;
190        }
191        if (!c->comm) {
192            c->comm = strdup(comm);
193            p->current = c;
194            return;
195        }
196        c = c->next;
197    }
198    c = malloc(sizeof(struct per_pidcomm));
199    assert(c != NULL);
200    memset(c, 0, sizeof(struct per_pidcomm));
201    c->comm = strdup(comm);
202    p->current = c;
203    c->next = p->all;
204    p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209    struct per_pid *p, *pp;
210    p = find_create_pid(pid);
211    pp = find_create_pid(ppid);
212    p->ppid = ppid;
213    if (pp->current && pp->current->comm && !p->current)
214        pid_set_comm(pid, pp->current->comm);
215
216    p->start_time = timestamp;
217    if (p->current) {
218        p->current->start_time = timestamp;
219        p->current->state_since = timestamp;
220    }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225    struct per_pid *p;
226    p = find_create_pid(pid);
227    p->end_time = timestamp;
228    if (p->current)
229        p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235    struct per_pid *p;
236    struct per_pidcomm *c;
237    struct cpu_sample *sample;
238
239    p = find_create_pid(pid);
240    c = p->current;
241    if (!c) {
242        c = malloc(sizeof(struct per_pidcomm));
243        assert(c != NULL);
244        memset(c, 0, sizeof(struct per_pidcomm));
245        p->current = c;
246        c->next = p->all;
247        p->all = c;
248    }
249
250    sample = malloc(sizeof(struct cpu_sample));
251    assert(sample != NULL);
252    memset(sample, 0, sizeof(struct cpu_sample));
253    sample->start_time = start;
254    sample->end_time = end;
255    sample->type = type;
256    sample->next = c->samples;
257    sample->cpu = cpu;
258    c->samples = sample;
259
260    if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261        c->total_time += (end-start);
262        p->total_time += (end-start);
263    }
264
265    if (c->start_time == 0 || c->start_time > start)
266        c->start_time = start;
267    if (p->start_time == 0 || p->start_time > start)
268        p->start_time = start;
269
270    if (cpu > numcpus)
271        numcpus = cpu;
272}
273
274#define MAX_CPUS 4096
275
276static u64 cpus_cstate_start_times[MAX_CPUS];
277static int cpus_cstate_state[MAX_CPUS];
278static u64 cpus_pstate_start_times[MAX_CPUS];
279static u64 cpus_pstate_state[MAX_CPUS];
280
281static int process_comm_event(event_t *event, struct perf_session *session __used)
282{
283    pid_set_comm(event->comm.tid, event->comm.comm);
284    return 0;
285}
286
287static int process_fork_event(event_t *event, struct perf_session *session __used)
288{
289    pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
290    return 0;
291}
292
293static int process_exit_event(event_t *event, struct perf_session *session __used)
294{
295    pid_exit(event->fork.pid, event->fork.time);
296    return 0;
297}
298
299struct trace_entry {
300    unsigned short type;
301    unsigned char flags;
302    unsigned char preempt_count;
303    int pid;
304    int lock_depth;
305};
306
307struct power_entry {
308    struct trace_entry te;
309    s64 type;
310    s64 value;
311};
312
313#define TASK_COMM_LEN 16
314struct wakeup_entry {
315    struct trace_entry te;
316    char comm[TASK_COMM_LEN];
317    int pid;
318    int prio;
319    int success;
320};
321
322/*
323 * trace_flag_type is an enumeration that holds different
324 * states when a trace occurs. These are:
325 * IRQS_OFF - interrupts were disabled
326 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
327 * NEED_RESCED - reschedule is requested
328 * HARDIRQ - inside an interrupt handler
329 * SOFTIRQ - inside a softirq handler
330 */
331enum trace_flag_type {
332    TRACE_FLAG_IRQS_OFF = 0x01,
333    TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
334    TRACE_FLAG_NEED_RESCHED = 0x04,
335    TRACE_FLAG_HARDIRQ = 0x08,
336    TRACE_FLAG_SOFTIRQ = 0x10,
337};
338
339
340
341struct sched_switch {
342    struct trace_entry te;
343    char prev_comm[TASK_COMM_LEN];
344    int prev_pid;
345    int prev_prio;
346    long prev_state; /* Arjan weeps. */
347    char next_comm[TASK_COMM_LEN];
348    int next_pid;
349    int next_prio;
350};
351
352static void c_state_start(int cpu, u64 timestamp, int state)
353{
354    cpus_cstate_start_times[cpu] = timestamp;
355    cpus_cstate_state[cpu] = state;
356}
357
358static void c_state_end(int cpu, u64 timestamp)
359{
360    struct power_event *pwr;
361    pwr = malloc(sizeof(struct power_event));
362    if (!pwr)
363        return;
364    memset(pwr, 0, sizeof(struct power_event));
365
366    pwr->state = cpus_cstate_state[cpu];
367    pwr->start_time = cpus_cstate_start_times[cpu];
368    pwr->end_time = timestamp;
369    pwr->cpu = cpu;
370    pwr->type = CSTATE;
371    pwr->next = power_events;
372
373    power_events = pwr;
374}
375
376static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
377{
378    struct power_event *pwr;
379    pwr = malloc(sizeof(struct power_event));
380
381    if (new_freq > 8000000) /* detect invalid data */
382        return;
383
384    if (!pwr)
385        return;
386    memset(pwr, 0, sizeof(struct power_event));
387
388    pwr->state = cpus_pstate_state[cpu];
389    pwr->start_time = cpus_pstate_start_times[cpu];
390    pwr->end_time = timestamp;
391    pwr->cpu = cpu;
392    pwr->type = PSTATE;
393    pwr->next = power_events;
394
395    if (!pwr->start_time)
396        pwr->start_time = first_time;
397
398    power_events = pwr;
399
400    cpus_pstate_state[cpu] = new_freq;
401    cpus_pstate_start_times[cpu] = timestamp;
402
403    if ((u64)new_freq > max_freq)
404        max_freq = new_freq;
405
406    if (new_freq < min_freq || min_freq == 0)
407        min_freq = new_freq;
408
409    if (new_freq == max_freq - 1000)
410            turbo_frequency = max_freq;
411}
412
413static void
414sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
415{
416    struct wake_event *we;
417    struct per_pid *p;
418    struct wakeup_entry *wake = (void *)te;
419
420    we = malloc(sizeof(struct wake_event));
421    if (!we)
422        return;
423
424    memset(we, 0, sizeof(struct wake_event));
425    we->time = timestamp;
426    we->waker = pid;
427
428    if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
429        we->waker = -1;
430
431    we->wakee = wake->pid;
432    we->next = wake_events;
433    wake_events = we;
434    p = find_create_pid(we->wakee);
435
436    if (p && p->current && p->current->state == TYPE_NONE) {
437        p->current->state_since = timestamp;
438        p->current->state = TYPE_WAITING;
439    }
440    if (p && p->current && p->current->state == TYPE_BLOCKED) {
441        pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
442        p->current->state_since = timestamp;
443        p->current->state = TYPE_WAITING;
444    }
445}
446
447static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
448{
449    struct per_pid *p = NULL, *prev_p;
450    struct sched_switch *sw = (void *)te;
451
452
453    prev_p = find_create_pid(sw->prev_pid);
454
455    p = find_create_pid(sw->next_pid);
456
457    if (prev_p->current && prev_p->current->state != TYPE_NONE)
458        pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
459    if (p && p->current) {
460        if (p->current->state != TYPE_NONE)
461            pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
462
463            p->current->state_since = timestamp;
464            p->current->state = TYPE_RUNNING;
465    }
466
467    if (prev_p->current) {
468        prev_p->current->state = TYPE_NONE;
469        prev_p->current->state_since = timestamp;
470        if (sw->prev_state & 2)
471            prev_p->current->state = TYPE_BLOCKED;
472        if (sw->prev_state == 0)
473            prev_p->current->state = TYPE_WAITING;
474    }
475}
476
477
478static int process_sample_event(event_t *event, struct perf_session *session)
479{
480    struct sample_data data;
481    struct trace_entry *te;
482
483    memset(&data, 0, sizeof(data));
484
485    event__parse_sample(event, session->sample_type, &data);
486
487    if (session->sample_type & PERF_SAMPLE_TIME) {
488        if (!first_time || first_time > data.time)
489            first_time = data.time;
490        if (last_time < data.time)
491            last_time = data.time;
492    }
493
494    te = (void *)data.raw_data;
495    if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
496        char *event_str;
497        struct power_entry *pe;
498
499        pe = (void *)te;
500
501        event_str = perf_header__find_event(te->type);
502
503        if (!event_str)
504            return 0;
505
506        if (strcmp(event_str, "power:power_start") == 0)
507            c_state_start(data.cpu, data.time, pe->value);
508
509        if (strcmp(event_str, "power:power_end") == 0)
510            c_state_end(data.cpu, data.time);
511
512        if (strcmp(event_str, "power:power_frequency") == 0)
513            p_state_change(data.cpu, data.time, pe->value);
514
515        if (strcmp(event_str, "sched:sched_wakeup") == 0)
516            sched_wakeup(data.cpu, data.time, data.pid, te);
517
518        if (strcmp(event_str, "sched:sched_switch") == 0)
519            sched_switch(data.cpu, data.time, te);
520    }
521    return 0;
522}
523
524/*
525 * After the last sample we need to wrap up the current C/P state
526 * and close out each CPU for these.
527 */
528static void end_sample_processing(void)
529{
530    u64 cpu;
531    struct power_event *pwr;
532
533    for (cpu = 0; cpu <= numcpus; cpu++) {
534        pwr = malloc(sizeof(struct power_event));
535        if (!pwr)
536            return;
537        memset(pwr, 0, sizeof(struct power_event));
538
539        /* C state */
540#if 0
541        pwr->state = cpus_cstate_state[cpu];
542        pwr->start_time = cpus_cstate_start_times[cpu];
543        pwr->end_time = last_time;
544        pwr->cpu = cpu;
545        pwr->type = CSTATE;
546        pwr->next = power_events;
547
548        power_events = pwr;
549#endif
550        /* P state */
551
552        pwr = malloc(sizeof(struct power_event));
553        if (!pwr)
554            return;
555        memset(pwr, 0, sizeof(struct power_event));
556
557        pwr->state = cpus_pstate_state[cpu];
558        pwr->start_time = cpus_pstate_start_times[cpu];
559        pwr->end_time = last_time;
560        pwr->cpu = cpu;
561        pwr->type = PSTATE;
562        pwr->next = power_events;
563
564        if (!pwr->start_time)
565            pwr->start_time = first_time;
566        if (!pwr->state)
567            pwr->state = min_freq;
568        power_events = pwr;
569    }
570}
571
572static u64 sample_time(event_t *event, const struct perf_session *session)
573{
574    int cursor;
575
576    cursor = 0;
577    if (session->sample_type & PERF_SAMPLE_IP)
578        cursor++;
579    if (session->sample_type & PERF_SAMPLE_TID)
580        cursor++;
581    if (session->sample_type & PERF_SAMPLE_TIME)
582        return event->sample.array[cursor];
583    return 0;
584}
585
586
587/*
588 * We first queue all events, sorted backwards by insertion.
589 * The order will get flipped later.
590 */
591static int queue_sample_event(event_t *event, struct perf_session *session)
592{
593    struct sample_wrapper *copy, *prev;
594    int size;
595
596    size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
597
598    copy = malloc(size);
599    if (!copy)
600        return 1;
601
602    memset(copy, 0, size);
603
604    copy->next = NULL;
605    copy->timestamp = sample_time(event, session);
606
607    memcpy(&copy->data, event, event->sample.header.size);
608
609    /* insert in the right place in the list */
610
611    if (!all_samples) {
612        /* first sample ever */
613        all_samples = copy;
614        return 0;
615    }
616
617    if (all_samples->timestamp < copy->timestamp) {
618        /* insert at the head of the list */
619        copy->next = all_samples;
620        all_samples = copy;
621        return 0;
622    }
623
624    prev = all_samples;
625    while (prev->next) {
626        if (prev->next->timestamp < copy->timestamp) {
627            copy->next = prev->next;
628            prev->next = copy;
629            return 0;
630        }
631        prev = prev->next;
632    }
633    /* insert at the end of the list */
634    prev->next = copy;
635
636    return 0;
637}
638
639static void sort_queued_samples(void)
640{
641    struct sample_wrapper *cursor, *next;
642
643    cursor = all_samples;
644    all_samples = NULL;
645
646    while (cursor) {
647        next = cursor->next;
648        cursor->next = all_samples;
649        all_samples = cursor;
650        cursor = next;
651    }
652}
653
654/*
655 * Sort the pid datastructure
656 */
657static void sort_pids(void)
658{
659    struct per_pid *new_list, *p, *cursor, *prev;
660    /* sort by ppid first, then by pid, lowest to highest */
661
662    new_list = NULL;
663
664    while (all_data) {
665        p = all_data;
666        all_data = p->next;
667        p->next = NULL;
668
669        if (new_list == NULL) {
670            new_list = p;
671            p->next = NULL;
672            continue;
673        }
674        prev = NULL;
675        cursor = new_list;
676        while (cursor) {
677            if (cursor->ppid > p->ppid ||
678                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
679                /* must insert before */
680                if (prev) {
681                    p->next = prev->next;
682                    prev->next = p;
683                    cursor = NULL;
684                    continue;
685                } else {
686                    p->next = new_list;
687                    new_list = p;
688                    cursor = NULL;
689                    continue;
690                }
691            }
692
693            prev = cursor;
694            cursor = cursor->next;
695            if (!cursor)
696                prev->next = p;
697        }
698    }
699    all_data = new_list;
700}
701
702
703static void draw_c_p_states(void)
704{
705    struct power_event *pwr;
706    pwr = power_events;
707
708    /*
709     * two pass drawing so that the P state bars are on top of the C state blocks
710     */
711    while (pwr) {
712        if (pwr->type == CSTATE)
713            svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
714        pwr = pwr->next;
715    }
716
717    pwr = power_events;
718    while (pwr) {
719        if (pwr->type == PSTATE) {
720            if (!pwr->state)
721                pwr->state = min_freq;
722            svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
723        }
724        pwr = pwr->next;
725    }
726}
727
728static void draw_wakeups(void)
729{
730    struct wake_event *we;
731    struct per_pid *p;
732    struct per_pidcomm *c;
733
734    we = wake_events;
735    while (we) {
736        int from = 0, to = 0;
737        char *task_from = NULL, *task_to = NULL;
738
739        /* locate the column of the waker and wakee */
740        p = all_data;
741        while (p) {
742            if (p->pid == we->waker || p->pid == we->wakee) {
743                c = p->all;
744                while (c) {
745                    if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
746                        if (p->pid == we->waker && !from) {
747                            from = c->Y;
748                            task_from = strdup(c->comm);
749                        }
750                        if (p->pid == we->wakee && !to) {
751                            to = c->Y;
752                            task_to = strdup(c->comm);
753                        }
754                    }
755                    c = c->next;
756                }
757                c = p->all;
758                while (c) {
759                    if (p->pid == we->waker && !from) {
760                        from = c->Y;
761                        task_from = strdup(c->comm);
762                    }
763                    if (p->pid == we->wakee && !to) {
764                        to = c->Y;
765                        task_to = strdup(c->comm);
766                    }
767                    c = c->next;
768                }
769            }
770            p = p->next;
771        }
772
773        if (!task_from) {
774            task_from = malloc(40);
775            sprintf(task_from, "[%i]", we->waker);
776        }
777        if (!task_to) {
778            task_to = malloc(40);
779            sprintf(task_to, "[%i]", we->wakee);
780        }
781
782        if (we->waker == -1)
783            svg_interrupt(we->time, to);
784        else if (from && to && abs(from - to) == 1)
785            svg_wakeline(we->time, from, to);
786        else
787            svg_partial_wakeline(we->time, from, task_from, to, task_to);
788        we = we->next;
789
790        free(task_from);
791        free(task_to);
792    }
793}
794
795static void draw_cpu_usage(void)
796{
797    struct per_pid *p;
798    struct per_pidcomm *c;
799    struct cpu_sample *sample;
800    p = all_data;
801    while (p) {
802        c = p->all;
803        while (c) {
804            sample = c->samples;
805            while (sample) {
806                if (sample->type == TYPE_RUNNING)
807                    svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
808
809                sample = sample->next;
810            }
811            c = c->next;
812        }
813        p = p->next;
814    }
815}
816
817static void draw_process_bars(void)
818{
819    struct per_pid *p;
820    struct per_pidcomm *c;
821    struct cpu_sample *sample;
822    int Y = 0;
823
824    Y = 2 * numcpus + 2;
825
826    p = all_data;
827    while (p) {
828        c = p->all;
829        while (c) {
830            if (!c->display) {
831                c->Y = 0;
832                c = c->next;
833                continue;
834            }
835
836            svg_box(Y, c->start_time, c->end_time, "process");
837            sample = c->samples;
838            while (sample) {
839                if (sample->type == TYPE_RUNNING)
840                    svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
841                if (sample->type == TYPE_BLOCKED)
842                    svg_box(Y, sample->start_time, sample->end_time, "blocked");
843                if (sample->type == TYPE_WAITING)
844                    svg_waiting(Y, sample->start_time, sample->end_time);
845                sample = sample->next;
846            }
847
848            if (c->comm) {
849                char comm[256];
850                if (c->total_time > 5000000000) /* 5 seconds */
851                    sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
852                else
853                    sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
854
855                svg_text(Y, c->start_time, comm);
856            }
857            c->Y = Y;
858            Y++;
859            c = c->next;
860        }
861        p = p->next;
862    }
863}
864
865static void add_process_filter(const char *string)
866{
867    struct process_filter *filt;
868    int pid;
869
870    pid = strtoull(string, NULL, 10);
871    filt = malloc(sizeof(struct process_filter));
872    if (!filt)
873        return;
874
875    filt->name = strdup(string);
876    filt->pid = pid;
877    filt->next = process_filter;
878
879    process_filter = filt;
880}
881
882static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
883{
884    struct process_filter *filt;
885    if (!process_filter)
886        return 1;
887
888    filt = process_filter;
889    while (filt) {
890        if (filt->pid && p->pid == filt->pid)
891            return 1;
892        if (strcmp(filt->name, c->comm) == 0)
893            return 1;
894        filt = filt->next;
895    }
896    return 0;
897}
898
899static int determine_display_tasks_filtered(void)
900{
901    struct per_pid *p;
902    struct per_pidcomm *c;
903    int count = 0;
904
905    p = all_data;
906    while (p) {
907        p->display = 0;
908        if (p->start_time == 1)
909            p->start_time = first_time;
910
911        /* no exit marker, task kept running to the end */
912        if (p->end_time == 0)
913            p->end_time = last_time;
914
915        c = p->all;
916
917        while (c) {
918            c->display = 0;
919
920            if (c->start_time == 1)
921                c->start_time = first_time;
922
923            if (passes_filter(p, c)) {
924                c->display = 1;
925                p->display = 1;
926                count++;
927            }
928
929            if (c->end_time == 0)
930                c->end_time = last_time;
931
932            c = c->next;
933        }
934        p = p->next;
935    }
936    return count;
937}
938
939static int determine_display_tasks(u64 threshold)
940{
941    struct per_pid *p;
942    struct per_pidcomm *c;
943    int count = 0;
944
945    if (process_filter)
946        return determine_display_tasks_filtered();
947
948    p = all_data;
949    while (p) {
950        p->display = 0;
951        if (p->start_time == 1)
952            p->start_time = first_time;
953
954        /* no exit marker, task kept running to the end */
955        if (p->end_time == 0)
956            p->end_time = last_time;
957        if (p->total_time >= threshold && !power_only)
958            p->display = 1;
959
960        c = p->all;
961
962        while (c) {
963            c->display = 0;
964
965            if (c->start_time == 1)
966                c->start_time = first_time;
967
968            if (c->total_time >= threshold && !power_only) {
969                c->display = 1;
970                count++;
971            }
972
973            if (c->end_time == 0)
974                c->end_time = last_time;
975
976            c = c->next;
977        }
978        p = p->next;
979    }
980    return count;
981}
982
983
984
985#define TIME_THRESH 10000000
986
987static void write_svg_file(const char *filename)
988{
989    u64 i;
990    int count;
991
992    numcpus++;
993
994
995    count = determine_display_tasks(TIME_THRESH);
996
997    /* We'd like to show at least 15 tasks; be less picky if we have fewer */
998    if (count < 15)
999        count = determine_display_tasks(TIME_THRESH / 10);
1000
1001    open_svg(filename, numcpus, count, first_time, last_time);
1002
1003    svg_time_grid();
1004    svg_legenda();
1005
1006    for (i = 0; i < numcpus; i++)
1007        svg_cpu_box(i, max_freq, turbo_frequency);
1008
1009    draw_cpu_usage();
1010    draw_process_bars();
1011    draw_c_p_states();
1012    draw_wakeups();
1013
1014    svg_close();
1015}
1016
1017static void process_samples(struct perf_session *session)
1018{
1019    struct sample_wrapper *cursor;
1020    event_t *event;
1021
1022    sort_queued_samples();
1023
1024    cursor = all_samples;
1025    while (cursor) {
1026        event = (void *)&cursor->data;
1027        cursor = cursor->next;
1028        process_sample_event(event, session);
1029    }
1030}
1031
1032static struct perf_event_ops event_ops = {
1033    .comm = process_comm_event,
1034    .fork = process_fork_event,
1035    .exit = process_exit_event,
1036    .sample = queue_sample_event,
1037};
1038
1039static int __cmd_timechart(void)
1040{
1041    struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
1042    int ret = -EINVAL;
1043
1044    if (session == NULL)
1045        return -ENOMEM;
1046
1047    if (!perf_session__has_traces(session, "timechart record"))
1048        goto out_delete;
1049
1050    ret = perf_session__process_events(session, &event_ops);
1051    if (ret)
1052        goto out_delete;
1053
1054    process_samples(session);
1055
1056    end_sample_processing();
1057
1058    sort_pids();
1059
1060    write_svg_file(output_name);
1061
1062    pr_info("Written %2.1f seconds of trace to %s.\n",
1063        (last_time - first_time) / 1000000000.0, output_name);
1064out_delete:
1065    perf_session__delete(session);
1066    return ret;
1067}
1068
1069static const char * const timechart_usage[] = {
1070    "perf timechart [<options>] {record}",
1071    NULL
1072};
1073
1074static const char *record_args[] = {
1075    "record",
1076    "-a",
1077    "-R",
1078    "-M",
1079    "-f",
1080    "-c", "1",
1081    "-e", "power:power_start",
1082    "-e", "power:power_end",
1083    "-e", "power:power_frequency",
1084    "-e", "sched:sched_wakeup",
1085    "-e", "sched:sched_switch",
1086};
1087
1088static int __cmd_record(int argc, const char **argv)
1089{
1090    unsigned int rec_argc, i, j;
1091    const char **rec_argv;
1092
1093    rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1094    rec_argv = calloc(rec_argc + 1, sizeof(char *));
1095
1096    for (i = 0; i < ARRAY_SIZE(record_args); i++)
1097        rec_argv[i] = strdup(record_args[i]);
1098
1099    for (j = 1; j < (unsigned int)argc; j++, i++)
1100        rec_argv[i] = argv[j];
1101
1102    return cmd_record(i, rec_argv, NULL);
1103}
1104
1105static int
1106parse_process(const struct option *opt __used, const char *arg, int __used unset)
1107{
1108    if (arg)
1109        add_process_filter(arg);
1110    return 0;
1111}
1112
1113static const struct option options[] = {
1114    OPT_STRING('i', "input", &input_name, "file",
1115            "input file name"),
1116    OPT_STRING('o', "output", &output_name, "file",
1117            "output file name"),
1118    OPT_INTEGER('w', "width", &svg_page_width,
1119            "page width"),
1120    OPT_BOOLEAN('P', "power-only", &power_only,
1121            "output power data only"),
1122    OPT_CALLBACK('p', "process", NULL, "process",
1123              "process selector. Pass a pid or process name.",
1124               parse_process),
1125    OPT_END()
1126};
1127
1128
1129int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1130{
1131    argc = parse_options(argc, argv, options, timechart_usage,
1132            PARSE_OPT_STOP_AT_NON_OPTION);
1133
1134    symbol__init();
1135
1136    if (argc && !strncmp(argv[0], "rec", 3))
1137        return __cmd_record(argc, argv);
1138    else if (argc)
1139        usage_with_options(timechart_usage, options);
1140
1141    setup_pager();
1142
1143    return __cmd_timechart();
1144}
1145

Archive Download this file



interactive